
Big Code Infrastructure for Building
Tools to Improve Software Development

Óscar Rodŕıguez Prieto

PhD Supervisor

Prof. Francisco Ort́ın Soler

Department of Computer Science

University of Oviedo

A thesis submitted for the degree of

Doctor of Philosophy

Oviedo, Spain

June 2020

Acknowledgements

This work has been partially funded by the Spanish Department of
Science and Technology, under the National Program for Research,
Development and Innovation (project RTI2018-099235-B-I00). We
have also received funds from the University of Oviedo, through its
support to official research groups (GR-2011-0040).

I was awarded an FPU grant by the Spanish Department of Science
and Technology (grant number FPU15/05261). The objective of these
grants is to support graduate students wishing to pursue a PhD de-
gree. A PhD dissertation is proposed to be undertaken by the appli-
cant, within a research group and supervised by a tenure researcher.

Part of the research discussed in this dissertation has also been funded
by the European Union, through the European Regional Development
Funds (ERDF); and the Principality of Asturias, through its Science,
Innovation Plan (grant GRUPIN14-100).

The research work in this dissertation was partially done during my
research stay at the Computer Laboratory of the University of Cam-
bridge (UK), under the supervision of Professor Alan Mycroft. I thank
all the people of the Computer Laboratory for their warm welcome
and their generous hospitality.

Abstract

The use of source code repositories such as GitHub, SourceForge and
Bitbucket has significantly risen in the last decade. According to
GitHub, on November 2018 this code hosting platform reached 100
million repositories; on 2019, 44 million new repositories were created.
These massive codebases could be used as data to create programming
tools, services and models to improve software development. The
research field focused on this topic has been termed “big code”, due
to its similarity with big data and the usage of source code.

Most programs are commonly written as textual information. How-
ever, they enclose syntactic and semantic information that is usually
represented as trees and graphs. This information is retrieved by
software tools, and used for many different purposes such as static
program analysis, code deobfuscation, software metrics computation,
program transformation, advanced code search, and coding guide-
line checking. However, most of such tools are designed ad hoc for
the particular purpose they are aimed at. Moreover, there is usually
a trade-off between scalability and the source-code detail provided:
those tools that scale to million-line programs provide a reduced sub-
set of program information.

This dissertation proposes an infrastructure, called ProgQuery, to al-
low users to create their own tools to process the syntactic and se-
mantic information of source code. Seven graph representations are
designed to model different syntactic and semantic information of Java
programs. Such representations are overlaid, meaning that syntactic
and semantic nodes of the different graphs are interconnected to allow
combining different kinds of information.

We modify the Java compiler to compute the syntactic and seman-
tic representations, and store them in a Neo4j graph database. By
using the same data structure in the persistence system, we avoid
the impedance mismatch caused by the utilization of a relational
database. Main benefits are the direct access to graph entities in the
persistence store, better performance than the relational model, and
multiple mechanisms to retrieve the information from the database.

In this dissertation, we use the proposed system for two case scenarios.
First, we use the Cypher declarative graph query language to imple-
ment in ProgQuery 13 static analyses published by the CERT division
of the Software Engineering Institute at Carnegie Mellon University.
These analyses are expressed as queries, and prompt common Java

mistakes not detected by the compiler. The second case scenario is
the extraction of program information to classify source code using
supervised machine learning. The system is able to label expert and
novice programmers with an average accuracy of 99.6%.

We evaluate ProgQuery and compare it to the related systems. Our
system outperforms the other systems in analysis time, and scales
better to program size and analysis complexity. ProgQuery analyzes
huge Java programs in tens of seconds, whereas the other alternatives
show memory errors. Moreover, the amount of source code required
to implement the analyses shows that ProgQuery is more expressive
than the other approaches. The additional information stored by
ProgQuery increases insertion time of programs and database size, but
these increases are significantly lower than the analysis performance
gains obtained.

Keywords

Big code, program representation, static program analy-
sis, graph database, coding guidelines, declarative query
language, machine learning, syntax patterns, abstract syn-
tax trees, decision trees, program expertise, Cypher, Java,
Neo4j

Resumen

En la última década, el uso de repositorios de código como GitHub,
SourceForge o BitBucket se ha visto incrementado significativamente.
Según los datos de GitHub, en noviembre de 2018 se hab́ıa registrado
100 millones de repositorios; posteriormente, en 2019 se crearon 44
millones de nuevos repositorios. La información de estos repositorios
de código masivos puede ser utilizada como datos para la construcción
de herramientas, servicios y modelos orientados a mejorar el desarro-
llo software. La nueva área de investigación sobre este tema ha sido
bautizada como “big code”, debido a su paralelismo con el big data y
al uso de código fuente (source code) como datos.

Aunque la gran mayoŕıa de los programas se codifican como infor-
mación textual, éstos contienen información sintáctica y semántica
t́ıpicamente representada por medio de árboles y grafos. Las herra-
mientas para mejorar el desarrollo software extraen dicha información
y la utilizan para distintas tareas como el análisis estático de progra-
mas, la desofuscación de código, el cálculo de métricas software, la
transformación de programas, la búsqueda avanzada de código y la
comprobación de gúıas de estilo. No obstante, la mayoŕıa de estas
herramientas se diseñan ad hoc para resolver la tarea espećıfica para
la que fueron constrúıdas. Por otra parte, suele existir un compro-
miso entre la escalabilidad de los sistemas y el nivel de detalle de la
información que proporcionan sobre el código fuente: los que sopor-
tan programas de millones de ĺıneas de código tan solo proveen un
subconjunto reducido de la información.

En esta tesis doctoral se presenta ProgQuery, una infraestructura que
permite a los usuarios la creación de sus propias herramientas orienta-
das a procesar la información sintáctica y semántica del código fuente.
Se diseñaron 7 representaciones basadas en grafos que modelan distin-
ta información sintáctica y semántica relativa a programas Java. Estas
representaciones están superpuestas unas con otras, es decir, los nodos
sintácticos y semánticos de los distintos grafos se interconectan entre
śı, facilitando la combinación de distintos tipos de información.

Se modificó el compilador de Java para procesar dichas representa-
ciones y almacenarlas en una base de datos orientada a grafos Neo4j.
Al emplear la misma estructura de datos en el sistema de persisten-
cia, se evitan los desajustes de impedancia derivados de utilizar bases
de datos relacionales. Algunas ventajas de esta aproximación son el
acceso directo a las entidades de los grafos, mayor rendimiento que
el modelo relacional y la posibilidad de utilizar diversos mecanismos

para recuperar la información de la base de datos.

En esta tesis utilizamos la infraestructura propuesta en dos escenarios.
Primero, haciendo uso de Cypher, un lenguaje declarativo de consulta
para grafos, se implementaron en ProgQuery 13 análisis estáticos pu-
blicados por el equipo CERT del Instituto de Ingenieŕıa del Software
de la Universidad de Carnegie Mellon. Estos análisis se expresan en
forma de consultas que detectan errores comunes de programación en
Java, no detectados por los compiladores. El segundo escenario consis-
te en la extracción de información de programas para clasificar código
fuente, aplicando aprendizaje automático supervisado. La herramien-
ta desarrollada es capaz de determinar si un programador es experto
o novato con una precisión media del 99,6 %.

Finalmente, se llevó a cabo la evaluación de ProgQuery, comparando
su rendimiento con el de los sistemas relacionados existentes. Nuestro
sistema es más eficiente que los demás en cuanto al tiempo de análisis
y, además, es más escalable al tamaño de los programas y a la com-
plejidad de los análisis. ProgQuery es capaz de analizar los programas
Java de mayor tamaño existentes en los repositorios (decenas de mi-
llones de ĺıneas de código) en decenas de segundos, mientras el resto
de sistemas evaluados muestran errores por falta de memoria. Adicio-
nalmente, la cantidad de código empleada para codificar las consultas
indica que ProgQuery es más expresivo que las otras aproximaciones.
Sin embargo, la información adicional almacenada por nuestro siste-
ma hace que el tiempo de inserción de los programas y el tamaño de la
base de datos aumente, pero estos incrementos son significativamente
menores que las mejoras de rendimiento obtenidas.

Palabras Clave

Big code, representación de programas, análisis estático de
programas, gúıas de codificación, lenguaje de consulta de-
clarativo, aprendizaje automático, patrones sintácticos, árbo-
les de sintaxis abstracta, árboles de decisión, experiencia de
programación, Cypher, Java, Neo4j

Contents

Contents vi

List of Figures x

List of Tables xii

1 Introduction 1
1.1 Motivation . 1
1.2 Motivating examples . 2

1.2.1 Static program analysis . 2
1.2.2 Source code classification 5

1.3 Contributions . 7
1.4 Structure of the document . 8

2 Related Work 9
2.1 Source code query tools . 9
2.2 Ad hoc static analysis tools . 10
2.3 Classification of programmers by their expertise level 11
2.4 Clone detection . 12
2.5 Other scenarios of syntactic classifiers 13
2.6 Structured methods . 14

3 ProgQuery Infrastructure 16
3.1 Architecture . 16
3.2 Java compiler plug-in . 17
3.3 Overlaid program representations 18

3.3.1 Abstract Syntax Tree (AST) 18
3.3.2 Control Flow Graph (CFG) 19
3.3.3 Program Dependency Graph (PDG) 20
3.3.4 Call Graph . 20
3.3.5 Type Graph . 21
3.3.6 Class Dependency Graph (CDG) 21
3.3.7 Package Graph . 22

4 Web Prototype 23
4.1 Architecture . 23
4.2 Web application . 24

4.2.1 Programs . 24

vi

Contents

4.2.2 Analyses . 24
4.2.3 Results . 27
4.2.4 Users . 28

4.3 Web API . 28
4.3.1 Programs API . 28
4.3.2 Analyses API . 29
4.3.3 Results API . 29
4.3.4 Users API . 30

5 Use Case Scenario 1: Static Program Analysis 31
5.1 Static analyses . 31
5.2 Research questions . 33
5.3 Methodology . 33

5.3.1 Systems measured . 33
5.3.2 Programs used . 34
5.3.3 Data analysis . 34
5.3.4 Experimental environment 36

5.4 Evaluation . 37
5.4.1 Analysis time . 37

5.4.1.1 Increasing program sizes 38
5.4.1.2 Increasing complexity of analyses 39
5.4.1.3 Limit values . 41

5.4.2 Program analysis expressiveness 42
5.4.3 Memory consumption . 43
5.4.4 Insertion time . 44

6 Use Case Scenario 2: Programmer Classification 46
6.1 Requirements . 47

6.1.1 Different levels of syntax constructs 47
6.1.2 Heterogeneous compound structures 47
6.1.3 Interpretable white-box models 48
6.1.4 Scalability . 48
6.1.5 Models from trees . 48

6.2 Objective . 48
6.3 Methodology . 49

6.3.1 Homogeneous datasets and models construction 52
6.3.2 Homogeneous syntax pattern extraction 53
6.3.3 Syntax pattern selection and simplification 54
6.3.4 Heterogeneous dataset and model construction 55
6.3.5 Heterogeneous syntax pattern extraction 55

6.4 Evaluation . 55
6.4.1 Experimental data . 56
6.4.2 Experimental environment 56
6.4.3 Syntax pattern selection 57
6.4.4 Heterogeneous AST classification 58
6.4.5 Heterogeneous syntax pattern extraction 61
6.4.6 Scoring the expertise level of programmers 62
6.4.7 Execution time of the proposed method 63

vii

Contents

7 Conclusions 65

8 Future Work 67
8.1 Implementation of analyses not provided by other tools 67
8.2 Automatic insertion of open source code 67
8.3 Semantic web contents from open-source repositories 67
8.4 Predictive models with semantic features 68
8.5 Graph structure mining and classification 68
8.6 New programming languages and representations 68
8.7 Automatic error fixing . 69
8.8 Project information and evolution 69

A Graph Representations used in the Design of ProgQuery 71
A.1 Nodes . 71
A.2 Abstract Syntax Tree . 71

A.2.1 Nodes . 71
A.2.2 Relationships . 75
A.2.3 Properties . 79

A.3 Control Flow Graph . 82
A.3.1 Nodes . 82
A.3.2 Relationships . 84
A.3.3 Properties . 85

A.4 Call Graph . 85
A.4.1 Nodes . 85
A.4.2 Relationships . 87
A.4.3 Properties . 87

A.5 Type Graph . 87
A.5.1 Nodes . 87
A.5.2 Relationships . 88
A.5.3 Properties . 89

A.6 Program Dependency Graph . 89
A.6.1 Nodes . 89
A.6.2 Relationships . 90
A.6.3 Properties . 90

A.7 Class Dependency Graph . 90
A.8 Package Graph . 91

A.8.1 Nodes . 91
A.8.2 Relationships . 91
A.8.3 Properties . 91

B Analyses 92
B.1 MET53-J . 92
B.2 MET55-J . 92
B.3 SEC56-J . 93
B.4 DCL56-J . 93
B.5 MET50-J . 93
B.6 DCL60-J . 94
B.7 OBJ54-J . 94

viii

Contents

B.8 OBJ50-J . 94
B.9 ERR54-J . 95
B.10 MET52-J . 96
B.11 DCL53-J . 97
B.12 OBJ56-J . 98
B.13 NUM50-J . 99

C Features of the homogeneous datasets 101

D Publications 104

References 105

ix

List of Figures

1.1 Example Java code. 4
1.2 Cypher code implementing the OBJ50-J CERT CMU Java recom-

mendation. 5

3.1 Architecture of ProgQuery. 17
3.2 Seven different graph representations for the Java program in Fi-

gure 1.1. 19

4.1 Architecture of the web prototype. 24
4.2 Java program upload. 25
4.3 Analysis execution. 26
4.4 Results of executing an analysis against a given program. 27

5.1 Dependency of Java compiler memory (above) and iterations per
transaction (below) on insertion time for Neo4j embedded (above)
and server (below), when inserting the Frankenstein program in
Table 5.1. 37

5.2 Average analysis execution time for increasing program sizes (execu-
tion times are relative to ProgQuery embedded). 38

5.3 Execution time (seconds) trend for increasing program sizes (va-
lues shown are the geometric mean of execution times for all the
analyses executed against the given program). 39

5.4 Average execution time for increasing analysis complexity (execu-
tion times are relative to ProgQuery embedded). 40

5.5 Execution time (seconds) trend for increasing analysis complexity
(values shown are the geometric mean of execution times of all the
programs of the given complexity). 41

5.6 RAM memory consumed at analysis execution. 44
5.7 Insertion times for increasing program sizes, relative to ProgQuery

server. 45
5.8 Insertion times per node/arc for increasing program sizes, relative

to ProgQuery server. 45

6.1 Program representation as heterogeneous compound syntax trees. 47
6.2 Architecture of the feature learning process. 50
6.3 Feature abstraction function for the syntactic category of expressions. 52

x

List of Figures

6.4 Classifier accuracy (y-axis) obtained with a percentage of rules (x-
axis) with the highest confidence, coverage, precision and recall.
For confidence, the CoV of the last 10 values below 2 % is shown. 58

6.5 Accuracy of all the classifiers (whiskers represent 95 % confidence
intervals). 59

6.6 Percentage of instances per score, using a probabilistic LG model. 63

A.1 Labels defined to categorize the nodes used for the different Java
program representations. 72

xi

List of Tables

5.1 Programs selected from the CUP GitHub Java corpus (percentile
and position refer to the non-empty lines of code). 35

5.2 Program representations used by the different analyses and their
level of complexity. 40

5.3 ProgQuery execution time (seconds) for analyses in Section 5.1,
run against a Java program of 18M lines of code. 42

5.4 Number of tokens (lexical elements), AST nodes, and lines of code
of the queries used to write all the analyses in the different systems
(PQ stands for ProgQuery). 43

6.1 Feature abstractions used for expressions. 53
6.2 Number of AST nodes. 57
6.3 Results of pattern selection. 59
6.4 Performance of all the heterogeneous models (95 % confidence in-

tervals are expressed as percentages). Bold font represents the hig-
hest value. If one row has multiple cells in bold type, it means that
there is not significant difference among them (p-value ≥ 0.05, α
= 0.05). 60

6.5 Performance of all the homogeneous models (95 % confidence inter-
vals are expressed as percentages). Bold font represents the highest
value. If one row has multiple cells in bold type, it means that the-
re is not significant difference among them (p-value ≥ 0.05, α =
0.05). 60

6.6 Execution times (seconds) of all the modules in the architecture. . 63

A.1 Relationships defined for ASTs (part 1). 80
A.2 Relatioships defined for ASTs (part 2). 81
A.3 Properties defined for ASTs. 83
A.4 Relationships defined for CFGs. 86
A.5 Properties defined for CFGs. 86
A.6 Relationships defined for Call Graphs. 87
A.7 Relationships defined for Type Graphs. 88
A.8 Properties defined for Type Graphs. 89
A.9 Relationships defined for PDGs. 90
A.10 Relationships defined for Package Graphs. 91

C.1 Feature abstractions used for statements. 101
C.2 Feature abstractions used for methods. 102

xii

List of Tables

C.3 Feature abstractions used for fields. 102
C.4 Feature abstractions used for types. 102
C.5 Feature abstractions used for programs. 103

xiii

Chapter 1

Introduction

1.1 Motivation

In textual programming languages, input programs are collections of source code
files (plus additional resources) coded as text. That textual information actually
encloses syntactic and semantic information that compilers and interpreters, af-
ter different analysis phases, represent internally as tree and graph structures [1].
Besides compilers, other tools use that syntactic and semantic information for
different purposes such as advanced source code querying [2], program analy-
sis [3], and constructing predictive models that learn from massive source code
repositories [4].

Software developers and tools often query source code to explore a system,
or to search for code for maintenance tasks such as bug fixing, refactoring and
optimization. Text-based search techniques are mainly based on finding sequences
of words and regular expressions, but they do not support advanced queries based
on syntactic and semantic properties of the source code. That is a common
necessity when, for instance, a programmer wants to locate all the occurrences of
a code pattern in order to refactor them [5].

Program analysis is another case scenario where syntactic and semantic infor-
mation of source code is used for different purposes. Static program analysis is
based on the evaluation of different dynamic program properties—such as correct-
ness, optimization, robustness and safety—, without executing the source code [3].
For example, FindBugs is an open-source static-analysis tool that finds potential
bugs and performance issues in Java code, not detected by the compiler (e.g.,
some null pointer dereferences) [6]. Checkstyle checks whether Java source code
conforms to specific coding conventions and standards (e.g., Sun code conven-
tions and Google Java style), widely used to automate code review processes [7].
Coverity is a multi-language commercial product that identifies critical software
defects and security vulnerabilities (e.g., buffer overflow) [8]. These tools work
with different syntactic and semantic representations of source code, but users
cannot specify their own ad-hoc analyses/queries via a standard language. In-
stead, they have to implement their own code analyzer by calling the APIs or
services provided by the tools.

1

1.2. Static program analysis

In the existing advanced program analysis and querying tools, there is a trade-
off between scalability and the source-code detail provided [9]. Those that scale to
million-line programs use relational or deductive databases, but they just provide
a reduced subset of all the program information, with consequent limitations on
their query expressiveness. For example, Google’s BigQuery provides a scalable
SQL search system for any project in GitHub [10], but syntactic and semantic
patterns cannot be consulted. On the other hand, some tools provide more ad-
vanced program information, but that affects the scalability of the system. For
example, Wiggle provides detailed syntactic structures of Java programs [11],
but some non-basic analyses do not terminate when applied to 60K lines of code
programs (Section 5.4.1.3).

As mentioned, syntactic and semantic information of source code is also used
in the construction of predictive tools that learn from massive code repositories
(e.g., GitHub, SourceForge, BitBucket and CodePlex) using machine learning and
probabilistic reasoning [12]. The information extracted from programs in code
repositories represents a huge amount of data to build predictive models. This
research field is commonly referred to as “big code”, since it brings together big
data and code analysis [13]. The big code approach has been used to build tools
such as deobfuscators [12], statistical machine translation [14], security vulnera-
bility detection [15] and decompilation systems [16]. These tools extract syntactic
and semantic information from programs by implementing ad-hoc extraction pro-
cedures, depending on the necessities of each particular problem. However, they
do not allow the user to easily extract syntactic and semantic information from
programs in a standardized declarative fashion.

In this dissertation, we propose an efficient and scalable infrastructure, called
ProgQuery, that allows the user to extract and utilize advanced semantic and
syntactic properties of Java source code in a declarative and expressive way. Our
work is based on the idea that programs can be represented with overlaid graph
structures that connect different syntactic and semantic information, stored in
a graph database [9]. Using our open-source system, users can write their own
queries and analyses using an expressive declarative query language. The system
is able to perform in seconds complex analyses against huge Java programs with
tens of millions of lines of code. Information of program representations can be
extracted to create predictive models to improve software development such as
source code classifiers [17].

1.2 Motivating examples

Before detailing the contribution of the proposed infrastructure, we describe two
motivating examples where ProgQuery has been used. These two case scenarios
are detailed later in this document (Chapters 5 and 6).

1.2.1 Static program analysis

We first illustrate how our system can be used for static program analysis. We de-
scribe how we implemented the OBJ50-J Java analysis/recomendation published

2

1.2. Static program analysis

by the CERT division of the Software Engineering Institute at Carnegie Mellon
University [18]. That recommendation is titled “never confuse the immutability
of a reference with that of the referenced object”. In Java, the value of final

references cannot be modified (e.g., line 10 in Figure 1.1), meaning that it is not
possible to change which object they point to. However, a common incorrect
assumption is that final prevents modification of the state of the object pointed
by the reference (i.e., believing the compiler prompts an error in line 26 of Fig-
ure 1.1). Therefore, many programmers improperly use final references, when
they actually want to avoid mutability of the referenced object.

Figure 1.2 shows how we implemented the OBJ50-J analysis in our system.
As mentioned, ProgQuery models programs with different graph structures rep-
resenting different syntactic and semantic information. Those representations are
stored in a Neo4j graph database, which provides the Cypher declarative graph
query language [19]. The code in Figure 1.2 is a Cypher query that uses graph-
based program representations to implement the OBJ50-J analysis. It shows an
informative warning message to the user when the recommendation is not fulfilled.

The Cypher code in line 1 (Figure 1.2) matches all the final variables (fields,
parameters and local variables) which state may be modified by a given expression
(mutatorExpr). The only variable matched is the final points field in line 10 of
Figure 1.1 (there is no other final variable). The mutator expressions matched
for that variable are the method invocation in line 15 and the assignment in
line 26 (Figure 1.1). Notice that the invocation in line 15 may modify the state of
points indirectly, because it calls clonePoints, which modifies the object referred
by its second parameter.

The with clause in line 2 is used to apply another match to the results of the
previous one. Additionally, mutatorMethod is set to the method or constructor
where mutatorExpr was defined in (functionality implemented by the ProgQuery’s
user-defined function getEnclMethodFromExpr).

The second match in Figure 1.2 gets the class (mutatorEnclClass) and Java
file (mutatorCU) where the mutatorMethods are defined. The where clause discards
the matched subgraphs where variables are fields (ATTR DEF), fields in the mu-
tator expression belong to the implicit object1 (isOwnAccess), and the mutator
method is a constructor or another non-public method only called by a construc-
tor (isInitializer). The purpose of this where clause is to tell field initialization
from field mutation. If the object state is changed in or from the constructor, it
is initialization; otherwise, it is mutation. Therefore, the mutator invocation in
line 15, which modifies the object state from the constructor, is discarded.

Lines 5, 6 and 7 in Figure 1.2 are aimed at building and returning the warning
message. Line 5 uses the common reduce higher order function to build a single
string indicating all the code locations where the final variable is mutated. Line 6

1Line 26 in Figure 1.1 modifies the state of the points reference belonging to the implicit ob-
ject (i.e., the object pointed by this), so mutation.isOwnAccess in line 4 of Figure 1.2 is true.
However, if we had “otherPoints[index] = newPoint;”, being otherPoints a Point2D[]

parameter, mutation.isOwnAccess would be false, because otherPoints would not necessar-
ily point to the implicit object (this).

3

1.2. Static program analysis

06: package drawable.polygons;

07:

08: public class Polygon implements Figure2D {
09:

10: final Point2D[] points;

11:

12: public Polygon(Point2D... pts) {

13: if (pts.length < 3)

14: throw new IllegalArgumentException(

"A polygon must have at least three vertices.");

15: clonePoints(pts, points = new Point2D[pts.length]);

16: }

17:

18: private static void clonePoints(Point2D[] src, Point2D[] dest){
19: if (src.length != dest.length)

20: throw new IllegalArgumentException(

"Point arrays must have the same length.");

21: for (int i = 0; i < src.length; i++)

22: dest[i] = (Point2D) src[i].clone();

23: }

24:

25: public void setPoint(int index, Point2D newPoint) {

26: points[index] = newPoint;

27: }

28:

29: @Override

30: public double getPerimeter() {

31: double perimeter = 0;

32: int nVertices = points.length;

33: for (int i = 0; i < nVertices; i++)
34: perimeter += points[i].distance(points[(i+1)% nVertices]);

35: return perimeter;

36: }

37: }

01: package drawable;

02:

03: public interface Figure2D {

04: double getPerimeter();

05: }

Figure 1.1: Example Java code.

simply sets to variableCU the file where the final variable is defined, and line 7
returns the warning message. For the Java program in Figure 1.1, ProgQuery
prompts the following message:

Warning [CMU-OBJ50] The state of variable ‘points’ (in line 10,
file ‘C:\...\Polygon.java’) is mutated, but declared final. The state of
‘points’ is mutated in: Line 26, column 17, file ‘C:\...\Polygon.java’.

With this motivating example, we show how ProgQuery provides multiple
graph representations stored in Neo4j, which can be used to perform program
analyses such as OBJ50-J. Cypher declarative query language facilitates making
the most of the graph representations and user-defined functions provided by
ProgQuery. Moreover, our platform provides significantly better analysis time

4

1.2. Source code classification

01: MATCH (variable:VARIABLE_DEF {isFinal:true})
-[mutation:STATE_MODIFIED_BY|STATE_MAY_BE_MODIFIED_BY]
->(mutatorExpr)

02: WITH variable, mutation, mutatorExpr, database.
procedures.getEnclMethodFromExpr(mutatorExpr)
as mutatorMethod

03: MATCH (mutatorMethod)<-[:DECLARES_METHOD|
DECLARES_CONSTRUCTOR|HAS_STATIC_INIT]-(mutatorEnclClass)
<-[:HAS_TYPE_DEF|:HAS_INNER_TYPE_DEF]
-(mutatorCU:COMPILATION_UNIT)

04: WHERE NOT(variable:ATTR_DEF AND mutation.isOwnAccess AND
mutatorMethod.isInitializer)

05: WITH variable, database.procedures.
getEnclosingClass(variable) as variableEnclClass,
REDUCE(seed='', mutationWarn IN COLLECT(' Line ' +
mutatorExpr.lineNumber + ', column ' + mutatorExpr.column
+ ', file \''+ mutatorCU.fileName + '\'') |
seed + '\n' + mutationWarn) as mutatorsMessage

06: MATCH (variableEnclClass)<-[:HAS_TYPE_DEF|
:HAS_INNER_TYPE_DEF]-(variableCU:COMPILATION_UNIT)

07: RETURN 'Warning [CMU-OBJ50] The state of variable \''+
variable.name + '\' (in line ' + variable.lineNumber +
', file \'' + variableCU.fileName +
'\') is mutated, but declared final. The state of \''+
variable.name +'\' is mutated in:' + mutatorsMessage

Figure 1.2: Cypher code implementing the OBJ50-J CERT CMU Java recommendation.

and scalability than the existing systems, with no additional memory consump-
tion (see Section 5.4).

Other static analyses are detailed and evaluated in Chapter 5.

1.2.2 Source code classification

One of the challenges of big code is to classify and predict properties of source code
using machine learning and probabilistic reasoning [4]. In this second motivating
example, we use the syntactic information gathered by ProgQuery to classify and
score the level of programming expertise of Java developers [17]. That classifier
could be used for different purposes such as improving the messages given to
programmers depending on their expertise level, documenting recurrent idioms
used by experts and beginners, checking student’s progress in a programming
course, and building Intelligent Tutoring Systems (ITS) [20].

In order to build the classifier model, we took Java code from different sources
and labeled them as either beginner or expert. For beginners, we gathered code
from first year undergraduate students in a Software Engineering degree at the
University of Oviedo. We took the code they wrote for the assignments in two
year-1 programming courses in academic years 2017/18 and 2018/19. All the

5

1.2. Source code classification

code was 100% written by students from scratch. Overall, we collected 35,309
Java files from 3,884 programs.

For expert programmers, we took the source code of different public Java
projects in GitHub. We selected active projects with the highest number of
contributors: Chromium, LibreOffice, MySQL, OpenJDK and Amazon Web Ser-
vices. These software products are implemented with 43,775 Java files in 137
programs (AWS comprises 133 different projects).

We extracted all the syntactic information detailed in Appendix A, using the
Java compiler plug-in included in the ProgQuery infrastructure (Section 3.2). In
this case scenario, we only used the syntactic information (not the semantic one),
since we defined a feature engineering approach only valid for trees [17].

The classifiers consider different levels of syntax constructs, such as expres-
sions, statements, methods, fields, types (classes, interfaces and enumerations)
and whole programs. The obtained models are able to classify the expertise level
of programmers with 78.1% accuracy for expressions, 88.3% for statements, 91.4%
for fields, 95.2% for methods, 99.5% for types, and 99.6% for whole programs.

The system is also able to find recurrent idioms used by experts and beginners.
For example, the following syntax pattern classifies a programmer as expert:

if enumeration percentage(program)>0 and interface percentage(program)>1
and ∃ type1 . category(type1)==class and generic types(type1)>0
and ∃ type2 . category(type2)==class and extend classes(type2)>0

and implement interfaces(type2)>1
and ∃ method . number statements(method)<=3

then expertise level = expert

The previous pattern describes programs that contains enumeration and in-
terface (more than 1%) types, implements no less than one generic type, at least
one class extends another class and implements more than one interface, and one
method has three or fewer statements.

Likewise, the following pattern to classify beginners was found:

if not(isOverride(method)) and numberOfAnnotations(method)==0
and numberOfParameters(method)==0 and not(isFinal(method))
and numberOfThrows(method)==0 and numberOfStatements(method)<=2
and visibility(method)==public and numberOfGenericTypes(method)==0
and namingConvention(method)==snake case
and ∃ statement . depth(statement)>=67

then expertise level = beginner

This second pattern identifies non-final non-generic methods, with neither
annotations nor parameters, which declare no exception thrown and are not over-
riding another method, use snake-case naming convention, and one statement has

6

1.3. Contributions

a depth (distance from that statement and the furthest leaf node in the Abstract
Syntax Tree (AST)) greater than 66.

Chapter 6 details how the classifiers were created. It also presents a model
to score the level of expertise of programmers, and information about the syntax
patterns extracted.

1.3 Contributions

These are the major contributions of this dissertation:

1. An infrastructure to provide syntactic and semantic information from Java
source code (Chapter 3). Such information can be consulted declaratively,
using different graph representations. These representations are overlaid,
sharing common interconnected nodes that make it easy to combine syn-
tactic and semantic program information.

2. Different graph structures comprising an ontology of syntactic and semantic
representation of Java programs (Appendix A). Program information is
represented with nodes (classes or concepts), relationships (relations) and
properties (attributes or features).

3. An efficient and scalable storage (and inspection) of program representa-
tions (Chapters 3 and 5). Following the ontology designed, a Java compiler
is modified to create graphs representing the input program and store them
into a persistence system. No impedance mismatch exists, since graph ab-
stractions are maintained in the database, avoiding the translation to tables.
The resulting system provides significant lower analysis times than related
systems, and scales better to program size and analysis complexity.

4. Utilization of the proposed infrastructure to implement different well-known
static program analyses (Chapter 5). We take some analyses from CERT
division of the Software Engineering Institute at Carnegie Mellon Univer-
sity [18], and implement them using ProgQuery. The analysis time, memory
consumption, scalability for increasing program size and analysis complex-
ity, and insertion time are measured and compared to related systems.

5. Web application prototype to automize and share static analysis of Java
programs (Chapter 4). The ProgQuery infrastructure is offered as a web
application and Web API (a set of web services) to allow the automatic
insertion of programs, by specifying its GitHub identifier and using the
Maven build automation tool. Existing analyses are provided. Users can
create their own analyses, and share them with other users. Static analyses
can be executed against single Java projects or a group of them.

6. Construction of a predictive model to classify Java code according to the
programmer’s expertise level (Chapter 6). Program information is obtained
and translated into different datasets representing common Java constructs.
This information is used in a feature learning process to build a classifier
using supervised machine learning. The model is able to label expert and

7

1.4. Structure of the document

novice programs with an average accuracy of 99.6%, only using syntactic
information.

1.4 Structure of the document

This PhD dissertation is structured as follows. The next chapter describes related
work, and the ProgQuery infrastructure is presented in Chapter 3. We describe
the web prototype developed using the ProgQuery infrastructure in Chapter 4.
Chapter 5 shows how to use ProgQuery to write real static program analyses,
and uses those analyses to evaluate our system and compare it with related ap-
proaches. In Chapter 6, we show how ProgQuery can be used to extract program
information to create a Java source-code classifier. Conclusions are presented in
Chapter 7 and future work is discussed in Chapter 8.

Appendix A details the ontology designed to represent syntactic and semantic
information of Java programs. Appendix B depicts the Cypher source code to
implement in ProgQuery the static program analyses presented in Section 5.1.
The features of the homogeneous datasets created with ProgQuery for the source-
code classifier (Chapter 6) are presented in Appendix C. Finally, Appendix D
enumerates the publications I wrote in the last four years.

8

Chapter 2

Related Work

This section describes the existing research works related to this PhD dissertation.
We start describing the source code query tools (Section 2.1), which provide users
with mechanisms to describe their own static analyses. Section 2.2 describe well-
known static analysis tools that detect numerous errors in source code, but they
do not allow users to write their own analyses. Next sections discuss the work
related to source code classification with syntactic models: programmer classi-
fication (Section 2.3), clone detection (Section 2.4), other scenarios of syntactic
classifiers (Section 2.5), and structured methods (Section 2.6).

2.1 Source code query tools

The closest work to the one presented in this dissertation is Wiggle, a proto-
type source-code querying system based on the graph data model [9]. It modifies
the Java compiler to obtain ASTs of each program and store them in a Neo4j
graph database. Wiggle proposes overlays as a mechanism to express queries
as a mixture of syntactic and semantic information [21]. The prototype imple-
mentation provides limited semantic data about type hierarchy and attribution
(annotation), and method calls. Information about type hierarchy and method
calls consists in specific edges connecting type and method definitions, which
are sometimes duplicated (instead of reused) for projects with multiple files [11].
In Wiggle, call graphs do not include constructors (just methods), and method
invocation nodes are not connected to the definition of the method being in-
voked. ASTs are annotated with types represented as strings, making it difficult
to obtain the structural information of types. The implementation gathers node
type information using reflection, causing a significant performance penalty (see
Section 5.4.4). Wiggle only supports Java 7, so newer elements of the language
(such as lambda expressions, method references, and default methods) are not
represented. Wiggle’s authors propose the representation of more sophisticated
overlays, such as control and data flow, to facilitate the implementation of com-
plex code analyses [9].

Semmle CodeQL is a source-code analysis platform for Java, C#, Python,
JavaScript and C/C++ [22]. Each codebase is created by a language-specific

9

2.2. Ad hoc static analysis tools

extractor implemented from existing compiler front-ends, which takes program
representations and stores them into a relational database. For Java, the re-
lational database stores the AST, type information, and additional metadata.
AST structures are converted into tables by storing each node as an entry, and
connecting them through primary/foreign keys. Types are stored in another ta-
ble, representing their hierarchical relationships. Expressions are attributed with
their inferred types. Other tables store the methods and constructors statically
invoked by expressions, and variables bound to their definition. Information in
the database is consulted with QL, an object-oriented variant of the Datalog
logical query language [23]. Although QL provides graph abstractions to consult
program representations, its storage in a relational database causes an impedance
mismatch [24, 25]. Some evaluations have shown that graph databases perform
better than relational ones when traversing graph structures [26].

Frappé is a C/C++ source code query tool that supports large-scale code-
bases [27]. A Neo4j graph database is chosen to gain query efficiency by avoiding
repeated join operations, necessary in the relational model. Although Frappé
stores some AST information, important nodes such as expressions and state-
ments are not included in the representation. It does not include such nodes
to provide good performance for large codebases. Frappé represents node types
with a string property, but it does not support different types (subtyping poly-
morphism). A call dependency graph is provided, connecting function nodes
through calls relationships. Data dependency information relates function and
variable nodes. However, since expressions are not included, Frappé represents
neither where a function is called, nor where a variable is written. The isa type

edge relates functions and variables with their types. Frappé provides no control
flow analysis. It has been used to perform queries against the Linux kernel (11.4
million lines of code), and to manage multiple source code versions [28].

Zhang et al. propose a source code query framework to support syntac-
tic and semantic code queries across different object-oriented programming lan-
guages [29]. They handle language heterogeneity by transforming source code into
a unified abstract syntax format, using TXL [30]. Program representations are
stored in MangoDB, a Python wrapper for MongoDB [31]. JSON documents in
the database represent syntactic and semantic information of language-agnostic
programs. The semantic representations include type hierarchy, data dependency
and method call graphs. No information about control flow or type dependency
is stored. For source code queries, they propose JIns+, an extension of the JIns
declarative code instrumentation language [32]. Users may use JIns+ to write
their own analyses, valid for any object-oriented language. Although expressions
are stored in the database, JIns+ does not allow queries about expressions. There-
fore, common queries such as locating expressions calling a method or using a
variable cannot be expressed.

2.2 Ad hoc static analysis tools

FindBugs is a static analysis tool that looks for more than 300 different bugs in
Java code [6]. Unlike other tools, FindBugs does not try to identify all the defects

10

2.3. Classification of programmers by their expertise level

in a source program. Rather, it effectively and efficiently detects common defects
that developers will want to review and correct. It was designed to avoid generat-
ing false warnings (false positives). FindBugs only implements intra-procedural
dataflow analyses. It follows a plug-in architecture that allows users to write their
own analyses (detectors) in Java. Detectors are commonly implemented with the
Visitor design pattern [33], traversing the AST and control- and data-flow graphs.

SonarQube is an open-source platform for continuous inspection of code qual-
ity, which performs static code analysis to detect bugs, code smells, and security
vulnerabilities on more than 20 programming languages [34]. They use existing
analysis tools that derive metrics from their output, and add their own additional
analyses and metrics. SonarQube finds not only bugs but also bad smells, which
do not prevent correct program functioning, but usually correspond to another
problem in the system [35] (e.g., code duplication, forgotten interfaces and or-
phan abstract classes). SonarQube can be extended with user-defined plug-ins,
by implementing so-called sensors and decorators.

Coverity is a static analysis tool that finds defects and security vulnerabilities
in source code written in Java, C#, Python, JavaScript and C/C++ [8]. Code is
processed and stored in a database, which is consulted later to perform code anal-
yses. Example analyses are resource leaks, dereferences of null pointers, memory
corruptions, buffer overruns, control flow and error handling issues, and insecure
data handling. For that purpose, inter-procedural data and control flow analyses
are implemented. Analyses are neither sound nor complete; there may be non-
reported defects (false negatives) and false defects reported (false positives) [36].
Coverity does not allow users to write their own analyses.

PMD is an extensible cross-language static code analyzer [37]. It finds common
programming flaws, such as unused variables, empty catch blocks, unnecessary
object creation and copy-pasted code. Since PMD supports different languages,
it provides groups of language-specific detectors. Analyses in PMD are expressed
with rules. PDM provides an extensive API to write customized rules, imple-
mented either in Java or as a self-contained XPath query. PMD builds ASTs,
type representations, and control-flow and data-flow graphs.

2.3 Classification of programmers by their ex-

pertise level

In the field of programmer classification, Lee et al. used biometric sensors data
to detect the programmer’s level of expertise [38]. In particular, they used a
16-channel-amplifier V-amp to collect electroencephalographic data, and a SMI
RED-mx eye-tracker to classify eye movement according to the velocity of shifts
in the programmer eye direction. They conducted a study with 38 expert and
novice programmers, investigating how well electroencephalography and an eye-
tracker data can be utilized to classify novice and expert programmers in two
kinds of programming tasks (easy and difficult). By using Support Vector Ma-
chines, they built three models: one using the eye-tracker, another one with
the electroencephalographic sensors, and the third one with both data sources.

11

2.4. Clone detection

The F1 performances of the three models to classify expert programmers were,
respectively, 90.3%, 93.1% and 97%.

Samy S. Abu-Naser built an artificial neural network to classify the academic
performance of students in linear programming [20]. Naser used the Linear Pro-
gramming Intelligent Tutoring System (LP-ITS), created in the Al-Azhar Univer-
sity to teach linear programming. LP-ITS automatically generates programming
problems for the students to solve [39]. The system stores information about the
student interaction with LP-ITS, that is used to train the model. They used the
log files of 67 learners, with 2144 program submissions; half for training and half
for testing. A multilayer perceptron neural network (9 nodes in the input layer,
5 for the hidden one, and one node in the output layer) with sigmoid activation
function was used to classify student’s level of expertise. The average accuracy
obtained was 92%.

2.4 Clone detection

Machine learning has been used to detect syntax patterns in source code for dif-
ferent purposes. One of the most active fields is clone detection, which is aimed
at finding similarities between source-code fragments. Clone detection is used
to identify repeated (not reused) code for software maintenance, program under-
standing, code refactoring, plagiarism detection and program compaction [40].
There exist different approaches to detect clones: text-based techniques, lexical,
syntactic and semantic approaches, and hybrid methods [41].

The syntactic approaches to detect clones use parsers to convert source code
into parse trees or ASTs, which are then processed using tree-matching or struc-
tural metrics [41]. Tree-matching techniques compare tree structures; whereas
metrics-based systems gather metrics for code fragments and compare the met-
rics vectors, rather than the AST, to perform the classification [42].

CloneDr is a tree-matching clone detector that compares trees with the same
structure [43]. To that aim, they propose three algorithms: one to detect sub-
tree clones; another one for variable-size sequences of sub-trees; and the third
algorithm to generalize combinations of other clones [44]. A combination of those
three algorithms is used to compare tree structures. The tool was applied to
a production software of more than 400K lines of code written in C, detecting
average levels of source code duplication of 28%.

Wahler et al. find exact and parameterized code fragments, defining a method
based on the concept of frequent itemsets, which works with an XML represen-
tation of ASTs [45]. In data mining, frequent itemsets are used to illustrate
relationships within large amounts of data. For ASTs, frequent itemsets repre-
sent sequences of consecutive statements constituting source code clones. The
implementation uses an XML database plus a link structure and a hash table to
speed up the data access. It took 60 minutes to detect clones in the JDK source,
and 90 minutes for the DisLog Developer’s Kit (DDK) of SWI-Prolog [45].

Evans et al. built Asta, a clone detection system that works with so-called

12

2.5. Other scenarios of syntactic classifiers

structural abstractions (i.e., AST subtrees) [40]. Programs are parsed, and their
ASTs are stored as XML documents. Subtrees are represented as patterns that
are matched with other subtrees to detect potential clones. Those patterns are
sometimes defined with holes, which are wildcards that allow any subtree match.
This feature allows Asta to detect clones with variations in arbitrary subtrees. In
a variety of 425K lines of code of Java and 16K lines of C#, 20-50% of the clones
found by Asta were structural, and thus beyond lexical methods [40]. Its C++
implementation took 10 minutes to analyze all the code.

Koschke et al. defines a clone detection system based on abstract trees, but
with linear time and space, similar to lexical alternatives [46]. The proposed
algorithm parses the input program, creates the AST, serializes the trees, applies
suffix tree detection, and decomposes the resulting token sequences into syntactic
structures. Suffix tree comparison is linear in space and time with respect to their
length. The proposed system, cscope, was tested with the Bellon benchmark,
providing accuracies similar to syntactic approaches, with runtime performance
of lexical ones [46].

The tool Deckard computes certain characteristic vectors to approximate
the structure of ASTs in a Euclidean space [47]. Deckard identifies relevant
and irrelevant nodes in the AST for clone detection. Characteristic vectors are
created by counting the number occurrences of relevant nodes in a subtree. Then,
Deckard detects similar clones by computing locality sensitive hashing, which
clusters similar vectors using the Euclidean distance metric. Deckard was used
to find clones in the open JDK and Linux kernel, performing better than CloneDr
in accuracy and scalability [47].

2.5 Other scenarios of syntactic classifiers

Ahmad Taherkhani used decision tree classifiers to recognize sorting algorithms
from Java code [48]. Algorithms are first converted into vectors of characteristics,
including syntactic features such as the number of expressions, tokens, loops, al-
gorithm length, and roles of variables. Then, a C4.5 decision tree classifier is built.
The model is trained with five different types of sorting algorithms: Quicksort,
Mergesort, Insertion sort, Selection sort and Bubble sort. Taherkhani collected
209 programs for the five sorting algorithms. The programs were gathered from
various textbooks on data structures and algorithms, together with course mate-
rials available on the Web. A leave-one-out cross-validation technique was used
to test the model. The average classification accuracy of the C4.5 model was
98.1%.

Nate is a tool to localize novice type errors in OCaml programs [49]. They
convert the ASTs of source programs into Bags-of-Abstracted-Terms (BOATs),
where each subtree is abstracted as a feature vector, comprising the numeric
values returned by feature functions applied to the tree. Nate is trained with
a large corpus of ill-typed programs and their “fixed” version, creating different
models with distinct supervised-learning techniques. The resulting models take
an ill-typed program and produces a list of potential blame assignments ranked by

13

2.6. Structured methods

likelihood. One important feature of Nate is that it just works with expression
nodes in the AST. Thus, it does not support error prediction of any syntax
construct different to expressions (e.g., statements, functions or data structures).
Nate is able to predict correctly the exact sub-expression that must be changed
72% of the time.

There are some other scenarios where machine learning has been used to pre-
dict properties of programs by using syntax (and sometimes semantic) informa-
tion of their source code. Some examples are vulnerabilities detection in source
code [15], source-code decompilation [16, 50], code completion [51], and code
idiom mining [52].

2.6 Structured methods

Alternative structured methods such as Graph Neural Networks operate on graph
structures to provide node and graph classification [53]. In the context of program
classification, Lu et al. conducted an experiment comparing Tree-Based Convolu-
tional Neural Networks (TBCNN), Gated Graph Neural Networks (GGNN) and
Gated Graph Attention Neural Networks (GGANN) [54]. They took C++ code
from students, aimed at solving different programming tasks. They evaluated the
performance of the three abovementioned neural networks to classify source code
into two predefined categories (five similar programming tasks in each group).
They created a graph representation that integrated ASTs with the semantic in-
formation of Function Call Graphs (FCG) and Data Flow Graphs (DFG). When
only syntactic information (i.e., ASTs) was used in the classification, the average
accuracies of TBCNN, GGNN and GGANN were, respectively, 94.1%, 96.4% and
97.1%. When semantic information was added, the performance improvement of
the classifiers was not significant [54].

Syntax trees were also used with structured prediction methods such as Con-
ditional Random Fields [12]. CRF is a probabilistic framework for labeling and
segmenting structured data, such as sequences, trees and graphs [55]. CRFs de-
fine conditional probability distributions over label sequences, given particular
observation sequences. CRFs was used to implement JSNice, a tool that predicts
names of identifiers and type annotations of variables in obfuscated JavaScript
code [12]. By analyzing the usage of variables in a function body, JSNice is able
to label the type of the variable (if it is built-in) and a suitable name. In the
evaluation of JSNice, it predicted correct names for 63% of the identifiers, and its
type annotation predictions were correct in 81% of the cases [12]. A limitation
of CRF is that it suffers high computation and space costs that are to high to be
used with massive codebases [56].

Relational learning is another technique already identified as a mechanism to
undertake graph mining [57]. Inductive Logic Programming (ILP) is a relational
machine learning technique that can be used to classify graphs. Applied to pro-
gramming language analysis, Sivaraman et al. implemented Alice, an ILP tool
to search source code by specifying syntax constructs [58]. The syntax of the
language to be queried is specified as logic facts, representing tree structures.

14

2.6. Structured methods

Users define their queries by annotating pieces of code with similar structure to
the one to be searched. After executing the query, irrelevant examples could be
labeled by the user. Then, Alice learns the query that includes the program
structure, by using ILP. When labeling two positive examples and three negative
ones, Alice successfully identifies similar code locations with 93% precision and
96% recall in 2.7 search iterations [58]. Some other performance experiments have
indicated that ILP does not seem to scale well with big data [59].

Tree kernels measure similarity between two trees in terms of their sub-struc-
tures [60]. Besides natural language processing, tree kernels have been used for
source-code plagiarism detection [61]. WASTK is a tool that builds the ASTs
of two programs and gets the similarity between them by computing the tree
kernels of both trees. In WASTK, Term Frequency-Inverse Document Frequency
(TF-IDF) weights are assigned to each node to avoid the misjudgment caused by
common code snippets. In the experiment conducted by Deqiang Fu et al., the
average performance of WASTK was 48.32%, significantly higher than the JPlag
and Sim software plagiarism tools [61]. Training time of tree kernels is quadratic
in the size of the trees [62].

15

Chapter 3

ProgQuery Infrastructure

ProgQuery is an efficient and scalable infrastructure that allows the user to per-
form operations such as program analyses, advanced queries and program feature
extraction. Such operations are expressed by means of advanced syntactic and se-
mantic program properties, in a declarative and expressive way. Our work is based
on the idea that programs can be represented with graph structures that connect
different syntactic and semantic information, stored in a graph database [9]. Us-
ing the ProgQuery open-source infrastructure, users could write their own queries
and analyses using an expressive declarative query language.

In this chapter we describe the architecture of ProgQuery (Section 3.1). Then,
we detail the design of the Java compiler plug-in developed (Section 3.2), and a
brief description of the different language representations defined (Section 3.3)—a
formal definition is presented in Appendix A. Forthcoming Chapter 4 presents a
web application built over the ProgQuery infrastructure, and the implementation
of different analyses together with an evaluation of ProgQuery are depicted in
Chapter 5.

3.1 Architecture

Figure 3.1 shows the architecture of ProgQuery. The Java programs to be pro-
cessed can be taken from existing open source repositories (e.g., GitHub, Source
Forge and Bitbucket), or provided by the user. Java code is compiled by our
modification of the standard Java compiler. We developed a plug-in that, besides
generating code, creates seven different graph representations for each program.
These representations are overlaid, meaning that a syntactic node may be con-
nected with other different semantic representations through semantic relation-
ships, and vice versa (Section 3.3). Our modified Java compiler creates the seven
different overlaid representations, and stores them into a Neo4j graph database.

ProgQuery users may consult the distinct graph representations for a given
program in various ways. They may write static program analyses [63], check
for guideline compliance [18], search for code using advanced queries [9], obtain
software metrics [64], and extract datasets with syntactic and semantic informa-
tion [17]. Our platform provides a collection of existing services (analyses, queries,

16

3.2. Java compiler plug-in

ProgQuery
plug-in

Connected syntactic & semantic
graph representations

AST

Call graph

Package Graph

Type graph

CFG

PDG

CDG

User-defined
functions

Guidelines
Software
metrics

Dataset
extractions

Queries

Analyses

ProgQuery API

Cypher

Gremlin

Neo4j API

ProgQuery user

writes new
Analyses

Guidelines

Queries

Software metrics

Dataset extractions

reutilizes or modifies existing services

consults

Java

Compiler

creates

is stored

generates

uses

Warning messages

(analyses and

guidelines)

Code excerpts

(queries)

Data & reports

(software metrics)

Datasets

(dataset extraction)

Source code repositories

GitHub SourceForge Bitbucket

Java source code

filters is compiled

Figure 3.1: Architecture of ProgQuery.

guidelines, etc.) as part of the ProgQuery API. In this way, users may use such
existing services against their Java code. The ProgQuery API also includes help-
ful Neo4j user-defined functions to facilitate the creation of new analyses (e.g.,
getEnclMethodFromExpr and getEnclosingClass in Figure 1.2).

Program representations stored in Neo4j may be consulted in different ways.
One mechanism is Cypher, a widespread declarative graph query language, widely
used with Neo4j [19]. Another approach is Gremlin, a graph traversal language
that supports imperative and declarative querying for Neo4j (among other graph
databases) [65]. ProgQuery users can also consult the graph representations
in Neo4j by using its traversal framework API, a callback-based lazily-executed
system to specify desired movements through graphs [66].

Given Java source code and a query, ProgQuery generates various types of
output. For program analyses and guideline compliances, ProgQuery returns a
collection of warning messages to improve the input Java code. For advanced
queries, the code excerpts found (labeled with their locations) are returned. Soft-
ware data and reports are the output for metrics requests, and datasets are re-
turned for queries requesting syntactic and semantic information.

3.2 Java compiler plug-in

ProgQuery modifies the standard Java compiler. It provides a ProgQueryPlugin

component that can be used with any Java 8+ SDK compiler (-Xplugin option).
At compilation time, the Neo4j connection string is passed to the plug-in, so
that it can store the syntactic and semantic graph representations depicted in
Section 3.3.

The Java compiler plug-in interface allows the user to modify and extend its
behavior by registering subscribers to various events. Such events occur before

17

3.3. Abstract Syntax Tree (AST)

and after every processing stage of the compiler, per source file. These events
are parse (syntax analysis and AST creation), enter (source code imports are
resolved), analyze (semantic analysis) and generate (code generation). Our plug-
in subscribes to the event that takes place when semantic analysis is finished
(analyze). Therefore, we intercept the compilation process when the AST has
been annotated with the type information inferred by the semantic analyzer [67].

The annotated AST is traversed with the Visitor design pattern [33]. We first
create the seven overlaid program representations in memory, and later store them
into a Neo4j database. We implement four different visitors. ASTTypesVisitor

translates the Java compiler AST into our AST representation, and creates the
Program Dependency Graph (PDG), Class Dependency Graph (CDG) and Call
Graph representations; CFGVisitor creates the Control Flow Graph (CFG); and
TypeVisitor and KeyTypeVisitor create the Type Graph. The Package Graph is
created with a simple traversal of the CDG.

3.3 Overlaid program representations

One of the key features of ProgQuery is the syntactic and semantic information
provided as different graph representations. The AST is the core structure, where
nodes represent syntactic constructs, hierarchically linked through syntactic re-
lationships. AST nodes are also linked to other (semantic or syntactic) nodes
through semantic relationships. Therefore, the syntactic and semantic graph rep-
resentations are overlaid. This makes it easier to express queries that combine
syntactic and semantic information, such as the one in Figure 1.2.

Figure 3.2 shows a small excerpt of the seven graph representations created by
ProgQuery for the source code in Figure 1.1. What follows is a brief description
of such representations (detailed information can be consulted in Appendix A).

3.3.1 Abstract Syntax Tree (AST)

An AST represents the syntactic information of the input program [1]. For a
given program, we create different ASTs where the root nodes are the different
compilation units, i.e. Java files. In Figure 3.2, the nodes n1 and n2 represent,
respectively, Polygon.java and Figure2D.java. These two nodes are syntactically
connected to the types implemented in each file (Polygon and Figure2D).

Each AST node representing a type collects, as child nodes, the members
defined for that type. For example, the class Polygon (n3) collects its construc-
tor (n5), the points field (n6), and the clonePoints (n7) and getPerimeter (n8)
methods. Child nodes of methods and constructors include their bodies (e.g., the
BLOCK n10 node), parameters (n11), and throws clauses. Method bodies hold col-
lections of statements (if statement of n12, and clonePoints method invocation
of n14) that, in turn, may contain other statements (n13) or expressions (n15 and
n16).

We use Neo4j labels to classify the different AST node types. COMPILATION UNIT

18

3.3. Control Flow Graph (CFG)

 ���

 ���

:INTERFACE

_DEF ���

Polygon(Point2D... pts)

{...}

class Polygon

:BLOCK

��

��

 ���

 ���

 ��

���

 ��

interface Figure2D

 ��

 ��

���

final Point2D[]

points; ��

 ��� :CFG_NORMAL_END

 ���

 ���

 ���

:USES_TYPE

if (...)

@Override

double getPerimeter()

{...}

clonePoints(pts, points);

pts

points=new Point2D[pts.length]

:ELEMENT_TYPE

 ��� ���

 ���

:PROGRAM

�� ��

Polygon.java

:PROGRAM_DECLARES

_PACKAGE

:PROGRAM_DECLARES

_PACKAGE

:DEPENDS_ON_PACKAGE

:COMPILATION_UNIT :COMPILATION_UNIT

 ���

:CFG_EXCEPTIONAL_END ���

:CFG_ENTRIES

:IS_SUBTYPE_IMPLEMENTS

:OVERRIDES

:USES_TYPE

:ITS_TYPE_IS :CALLS

:HAS_

DEF

void clonePoints(

Point2D[] src, ...)

{...}

:REFERS

_TO

package drawable.polygons
package drawable

:USED_BY

Point2D... pts

:MODIFIED_BY

:STATE_

_MAY_BE

_MODIFIED

_BY
AST

Call graph

Package Graph

Type graph

CFG

PDG

CDG

:PACKAGE_HAS_

COMPILATION_UNIT
:PACKAGE_HAS_

COMPILATION_UNIT

:ARRAY_TYPE

double getPerimeter();

throw new

Illegal

Argument

Exception();

:NEXT_STMT

:NEXT_STMT

_IF_FALSE

:NEXT_STMT

_IF_TRUE

:THROWS

: CLASS_DEF

Figure2D.java:CLASS_

DEF

class Object

:USES_TYPE :IS_SUBTYPE_

IMPLEMENTS
:IS_SUBTYPE_

EXTENDS

interface Clonable

class Point2D

Figure 3.2: Seven different graph representations for the Java program in Figure 1.1.

and BLOCK are two example labels depicted in Figure 3.21. We also use the mul-
tiple label capability provided by Neo4j to allow common generalizations of AST
nodes [67]. For example, the assignment expression in n16 has the ASSIGNMENT

label, but also the generalization labels EXPRESSION, AST NODE and PQ NODE. This
polymorphic generalization design supported by the multiple label feature is valu-
able to improve the expressiveness of ProgQuery (Section 5.4.2).

Syntactic relationships between nodes are also labeled in Neo4j. For example,
node n1 in Figure 3.2 is connected to node n3 through a HAS TYPE DEF labeled
relationship2.

3.3.2 Control Flow Graph (CFG)

CFGs represent the execution paths that may be traversed when the program is
run. First, it connects method or constructor definitions to their first statement

1We do not show all the labels for the sake of readability; see Appendix A for detailed
information.

2All the labels are not shown; details in Appendix A.

19

3.3. Call Graph

(e.g., CFG ENTRIES connects the n5 constructor to n12, its initial statement). When
there is no jump, a statement is connected to the following one with a NEXT STMT

relationship. For example, the clonePoints method invocation in line 15 of Fig-
ure 1.1 (n14 in Figure 3.2) is connected to a CFG semantic node n18 through
NEXT STMT. The semantic node n18 represents the end of the non-exceptional exe-
cution of a method (CFG NORMAL END).

Different control flow statements (e.g., if, while and for) involve a jump in
the execution flow. For such cases, the NEXT STMT IF TRUE and NEXT STMT IF FALSE

relationships represent the conditional changes in the execution flow (an example
is the connections between the if statement in n12 and the n13 and n14 AST
nodes).

CFG also models the exceptional jumps performed by Java checked excep-
tions1, and assert and throw instructions. For that purpose, ProgQuery defines
CFG nodes representing exceptional method termination, and exceptions han-
dled in a catch or finally block. For exception handling, the static types of
the exceptions thrown and caught are analyzed, connecting them only if they
could match at runtime. In Figure 3.2, the throw statement represented by n13

is connected to the CFG EXCEPTIONAL END semantic node n17, because no catch or
finally blocks are used to handle the exception.

3.3.3 Program Dependency Graph (PDG)

PDGs in ProgQuery provide information about when variables (fields, parameters
and local variables) and the state of the object they point to (in case variables
are references) may be read or modified. In Figure 3.2, the pts parameter in n11

is read by (USED BY) the pts expression in n15, passed as the first argument to the
clonePoints invocation. Likewise, the points field of the example program (n6)
is MODIFIED BY the assignment modeled by the n16 AST node.

As mentioned, our PDG representation also provides information about when
the state of the object pointed by a reference may be changed. This is a valuable
information for many analyses that consider object mutability [63]. For that pur-
pose, ProgQuery provides the STATE MODIFIED BY and STATE MAY BE MODIFIED BY

relationships. The former connects a variable to a statement or expression that
certainly modifies the state of the object. The latter represents that object mod-
ification may occur, depending on the execution flow. Moreover, this informa-
tion is inter-procedural, meaning that method bodies are analyzed to see if they
may modify the state of their parameters. For instance, the object pointed to by
points (n6) may be modified in the clonePoints invocation (n14), because points

is passed as the second argument and it could be modified in the for loop inside
clonePoints (line 21, Figure 1.1).

3.3.4 Call Graph

This representation provides information about method and constructor invo-
cations in the source code. Method/constructor definition nodes are connected

1In Java, unchecked exceptions are RuntimeException, Error and their subclasses.

20

3.3. Package Graph

through CALLS relationships to all the invocations in their bodies. In Figure 3.2,
the constructor represented by n5 is linked to the clonePoints invocation in
n14. Method/constructor invocations are also linked with their static definition
through a HAS DEF relationship (e.g., one connection between n14 and n7). In
this way, Call Graphs allow the user to easily navigate through the different
method/constructor definitions and invocations in the code.

Call Graphs in ProgQuery also consider polymorphic invocations. When the
invoked method has been overridden, all the method implementations that may
be called are obtained with the MAY REFER TO relationship. On the contrary, the
REFERS TO arc connects a method invocation to the only possible method definition
that could be invoked (e.g., the second link between n14 and n7).

3.3.5 Type Graph

Type graphs represent all the type information in the source program. All the
expression nodes are linked with their static type. For example, the assignment
expression represented by n16 is connected to its type through the ITS TYPE IS

relationship. The type is represented with a new n20 node of the type graph. n20

represents an array type, linked to its ELEMENT TYPE (Point2D). In ProgQuery, all
the instances of the same type are represented with the same node in the type
graph.

Type graphs also model hierarchical relationships among types, making it easy
to traverse classes, interfaces and enumerations in the source program. For that
purpose, ProgQuery provides the IS SUBTYPE IMPLEMENTS and IS SUBTYPE EXTENDS

relationships (the Polygon class of our example, n3, implements the Figure2D in-
terface, n4). Information about method overriding is also offered. The OVERRIDES

relationship links method implementations with the overridden method defini-
tions (if any)—e.g., connection between n8 and n9.

Point2D is not a class defined by the programmer. It belongs to the standard
java.awt.geom Java package, so its source code is not included in the program
representation. This is the reason why ProgQuery creates the new n19 node as
part of the Type Graph, not included in the AST. Therefore, ProgQuery provides
information not only for the source code, but also for the standard types used in
the program. For example, n19, n24 and n25 represent the Java Point2D, Object
and Cloneable types, not defined in the source program. For these three types,
ProgQuery sets to false their isDeclared property.

3.3.6 Class Dependency Graph (CDG)

The CDG representation is aimed at defining the usage relationships among types.
The only relationship provided is USES TYPE, which connects two type (class, in-
terface or enumeration) definitions. T1 is connected to T2 when T1 somehow
depends on T2. This dependence means that T1 defines a local variable, field or
parameter of type T2, extends or implements T2, defines a method returning T2,
etc. In our example, Polygon uses Figure2D and Point2D. Likewise, Point2D uses
Object and Cloneable.

21

3.3. Package Graph

3.3.7 Package Graph

The Package Graph gives information about package dependency, and joins up
all the ASTs in a program. This representation creates a new package node for
each package defined in the source code (n22 and n23 in Figure 3.2), which is
in turn linked to their compilation units (n1 and n2). The DEPENDS ON PACKAGE

relationship links two packages when one depends on the other. This dependency
relationship is derived from the USES TYPE class dependency defined in the CDG.

ProgQuery also creates a root node for each program inserted in the system.
The n21 PROGRAM node in Figure 3.2 represents the root node for the source code in
Figure 1.1. This node is connected through PROGRAM DECLARES PACKAGE to all the
package nodes defined in the program (n22 and n23). With this design, each pro-
gram is modeled with a graph built with seven different overlaid representations,
where PROGRAM can be thought as the root node of the combined AST.

22

Chapter 4

Web Prototype

In this chapter, we describe a web prototype we developed to show how the
ProgQuery infrastructure can be used to provide users with a mechanism to
create and share their own static analyses for Java programs. Its purpose is
to illustrate the potential of ProgQuery, and help us to understand the future
research works presented in Chapter 8. We first describe the architecture of the
system, detailing each element afterwards.

4.1 Architecture

Figure 4.1 shows the architecture of the web prototype. The system provides its
services by means of two interfaces. The first one is a web application that could
be accessed by users with any web browser. The second one is a Web API (a
collection of REST web services), aimed at constructing client applications that
consume the services provided by ProgQuery.

Programs to be analyzed may be uploaded by the user or a client applica-
tion. They could also be taken from an existing source code repository, such as
GitHub SourceForge and Bitbucket (repository management component in Fig-
ure 4.1). When a program is included in ProgQuery, it is compiled by the system.
The infrastructure provides a Java compiler plug-in that modifies the compilation
process (Section 3.2). ProgQuery also provides another Maven plug-in that cre-
ates the program representations described in Section 3.3, by modifying the way
Java applications are compiled with Maven. Those representations are created
by the infrastructure (used by both the Maven and Java compiler plug-ins), and
stored in a Neo4j database.

New analyses could be added and shared with the existing users. Analyses are
written in Cypher. They could be typed in the web application or uploaded to
the server. An analysis could be executed against one or many programs, and the
results are stored in the system. The output of all the previous analyses run by
the user can be consulted at any time. Different user information is also stored in
the system. The business logic related to these entities is placed in the analysis,
program and user management module in Figure 4.1. A relational database is
used to store those entities.

23

4.2. Analyses

User
(web browser)

Source code repositories

GitHub SourceForge Bitbucket

Web Application
Front-end

Web API

(web services)

Client Applications

InfrastructureWeb Server

Relational DBMS

Analyses

Results

Java compiler
plugin

Analysis, program and
user management

Maven
plugin

Program
representation

builder

Repository
management

Neo4j

Programs

Users

ProgQuery Web Prototype

Figure 4.1: Architecture of the web prototype.

4.2 Web application

We briefly describe the functionalities of the web application, classifying them by
the domain entities.

4.2.1 Programs

As shown in Figure 4.2, the prototype currently allows uploading a single Java
file (to test basic analyses), a Java project with a zip file, or an existing project
in GitHub. For the single file and zip options, the Java compiler plug-in is used,
and any parameter could be passed to the Java compiler. Notice that the zip file
could provide any library, by including their jar files in the compressed archive
to be uploaded.

If the zip file contains a pom.xml file, the Maven plug-in can be used for the
compilation. If the maven compile command is executed without errors, program
representations are included in ProgQuery. With this method, Maven transpar-
ently downloads all the program dependencies (libraries) declared in pom.xml, so
they do not need to be included in the zip file.

The third option allows to take a program from GitHub, compile it and upload
it to ProgQuery. The GitHub project must provide a Maven pom.xml file fulfilling
the requirements described in the previous paragraph. Alternatively, if the project
contains all its dependencies it could be compiled with the Java compiler.

All the Java projects uploaded by a user can be listed, consulted and deleted by
that user. When a project is uploaded (with any of the three options provided),
the user may optionally select existing analyses to be run against the uploaded
program.

4.2.2 Analyses

A naming system was defined to allow the utilization of numerous analyses in
ProgQuery. For this purpose, we selected the Reverse Domain Notation (RDN)

24

4.2. Analyses

Figure 4.2: Java program upload.

naming convention, based on reversing registered domain names. For example,
the motivating analysis presented in Section 1.2.1 is registered as es.uniovi.re-

flection.cmu.OBJ-50, since it implements the OBJ-50 recommendation by CERT
division at CMU [18], coded in ProgQuery by the Computational Reflection re-
search group of the Spanish University of Oviedo. We propose the same naming
convention for programs (Section 4.2.1).

Our system provides the ∗ wildcard to facilitate analysis search and group-
ing. For example, es.uniovi.reflection.cmu.* represents all the CMU analyses
implemented by the Reflection research group at University of Oviedo. Like-
wise, es.uniovi.reflection.* selects all the analyses developed by that research
group.

New queries could be added by writing them in a textbox or uploading existing
files. At insertion, its name, description and visibility should be provided. Vis-
ibility can be private (just for the current user), public (for everyone) or shared
with existing users. When a new analysis is created, the user can also specify a
set of programs to execute the analysis against.

The 13 analyses described in Section 5.1 are provided to the user (we plan
to add more analyses). We think this is a valuable service, because novice users
may not be fluent in the use of ProgQuery. In that case, analyzing existing
queries will be helpful. They can also modify those analyses to adapt them to
new requirements.

Figure 4.3 shows one way to run analyses. The user may search for an existing
project in ProgQuery. For basic tryouts, the Java code to be analyzed may be
written in the big textbox component on the left-hand side. The same options
are available for analyses: we can search an existing one or type its Cypher code.

25

4.2. Results

Figure 4.3: Analysis execution.

The results window is used to display the output of the analysis or the error
messages of either the compilation process or the analysis execution. Another
view of the web application allows the execution of multiple analyses against
multiple programs.

Analyses stored in ProgQuery could be searched (using wildcards), modified
and deleted (if the user is the owner).

As defined in Appendix A, ProgQuery also provides a set of user-defined
functions to make the development of new analyses easier. For example, the
database.procedures.getEnclosingStmt function returns the enclosing statement
where a particular expression is used; and database.procedures.getEnclosing-

Method returns the method where a statement has been written.

26

4.2. Users

Figure 4.4: Results of executing an analysis against a given program.

4.2.3 Results

As mentioned, ProgQuery stores the results of every analysis executed by the
logged user. If the execution is successful, the user will be able to consult all the
messages produced by the analyses, their date and time of execution, the analyses
run and programs analyzed.

Figure 4.4 shows one example view of results. Different analyses were exe-
cuted against different programs. The first program (Thumbslug) has warnings,
produced as the result of executing some of the analyses described by the CERT
division of Carnegie Mellon University [18]. Afterwards, ProgQuery shows the
warnings generated by the analysis of the Frankenstein program.

The results menu also provides information about the analyses under execu-
tion, which are yet to be completed. It is important to notice that some analyses
may take long computation time, especially when they are executed against big
Java projects. The user may force termination of analyses being executed, if
he/she is the owner. Likewise, the results of finished analyses can also be deleted.

27

4.3. Programs API

4.2.4 Users

New users could be created by specifying their email, password and given and
family names. This information can be changed by users, once they are logged
in to the system (settings menu). Users can unsubscribe themselves from the
system.

4.3 Web API

As mentioned, ProgQuery also provides its functionality as a collection of web
services. By using the Web API provided, client applications could be developed.

All the services provided require user authentication. We use JSON Web
Tokens (JWT) to authorize users and protect API routes [68]. JSON Web Tokens
are an open, industry standard RFC 7519 method for representing claims securely
between two parties [69]. The JWT-based authentication mechanism allows users
to enter their username and password in order to obtain a token, which allows
them to access Web API resources for a time period.

When the user accesses any service, the Web API server redirects him/her to
the authentication service, if there is no token or the token is expired. Users send
their credentials (login and password) to the authentication service. This service
validates the credentials and generates a JWT containing the user details and
the expiration time. Finally, it signs the token content with a secret key before
sending it to the client as a response.

Whenever the user wants to access any service, the user agent must send the
JWT in the authorization header [70]. Then, the Web API server takes the
JWT from the message header, decodes it, validates the signature, verifies user
permissions, executes the service, and returns the service response. If such au-
thentication fails, the Web API sends an HTTP code 401, unauthorized response.

Moreover, we only provide our services over SSL+HTTPS to encrypt the com-
munications. In this way, potential attackers that could sniff the network traffic
would not obtain the JWT used by the user.

We now provide a brief description of the web services provided by ProgQuery.

4.3.1 Programs API

– GET /api/programs. Only available for administrators. Service that lists all
the programs stored in the system.

– GET /api/programs/{id}. Returns the program with {id} Reverse Domain
Name (RDN).

– GET /api/programs?user={user}. Lists all the programs inserted by {user}.

– POST /api/programs. Inserts a new program in the database, and returns
it. The arguments to be passed are:

– RDN of the program.

28

4.3. Results API

– The name of the user inserting the program.

– Compilation mode/strategy (i.e., Java compiler or Maven).

– PUT /api/programs/{id}. Updates the source code of one given program,
passing its {id} RDN and the compilation mode/strategy.

– DELETE /api/programs/{id}. Deletes the program with {id} RDN and re-
turns it.

4.3.2 Analyses API

– GET /api/analyses. Lists all the analyses. Only available for admin users.

– GET /api/analyses/{id}. Gets the analysis with {id} RDN.

– GET /api/analyses?user={user}. Lists the analyses the given {user} has
access to.

– GET /api/analyses?user={user}&owner=true. Lists the analyses whose au-
thor is {user}.

– POST /api/analyses. Creates a new analysis and returns it. The arguments
to be passed are:

– RDN of the analysis.

– User who owns the analysis.

– A description of the analysis.

– The Cypher code implementing the analysis.

– Visibility (private, public or shared among a list of users).

– PUT /api/analyses/{id}. Updates the analysis with {id} as RDN. The
analysis attributes that could be updated are analysis name (RDN), de-
scription, Cypher code and visibility (private, public or shared).

– DELETE /api/analyses/{id}. Deletes the analysis with {id} RDN and re-
turns it.

4.3.3 Results API

– GET /api/results. Only available for administrators. This service lists all
the results stored in the system.

– GET /api/results/{id}. Gets the result with {id} as identifier.

– GET /api/results?programId={programId}. Lists the results stored for the
{programId} RDN.

– GET /api/results?analysisId={analysisId}. Lists the results stored for
the {analysisId} RDN.

– GET /api/results?user={user}. Lists the stored results for the analyses
executed by {user}.

29

4.3. Users API

– GET /api/results?programId={programId}&analysisId={analysisId}. Lists
the stored results relative to {analysisId} (RDN) and executed against
{programId} (RDN).

– POST /api/results. Executes an analysis against an inserted program and
returns the obtained result. The arguments to be passed are:

– RDN of the analysis.

– RDN of the program.

– PUT is not allowed for this entity.

– DELETE /api/results/{id}. Deletes the result {id} and returns it.

4.3.4 Users API

– GET /api/users. Service that lists all the users registered in the system.
Only available for admin users.

– GET /api/users/{user}. Gets the user with {user} identifier (emails are
used as user identifiers).

– GET /api/users/{user}/programs. Lists the programs inserted by {user}.
This service identifies the same resource as GET /api/programs?user={user}.

– GET /api/users/{user}/analyses. Lists the analyses whose author is {user}.
This service identifies the same resource as
GET /api/analyses?user={user}&owner=true.

– GET /api/users/{user}/results. Lists the stored results of the analy-
ses executed by {user}. This service identifies the same resource as GET

/api/results?user={user}.

– POST /api/users. Registers a new user in the system and returns it. The
arguments needed to register a new user are: email address, name, surname
and password.

– PUT /api/users/{user}. Updates the user with {user} identifier (email).
The user attributes that could be updated are: email address, name, sur-
name and password.

– DELETE /api/users/{user}. Deletes the user with {user} as email and re-
turns it.

30

Chapter 5

Use Case Scenario 1: Static
Program Analysis

The objective of this chapter is twofold. Firstly, it shows how ProgQuery, with
the ontology defined in Appendix A, can be used as an infrastructure to define
advanced program analysis declaratively (Section 5.1). Secondly, the collection
of analyses are used to evaluate the runtime performance, scalability and mem-
ory consumption of ProgQuery, and compare it with related systems. Different
research questions are raised to perform that evaluation (Section 5.2).

5.1 Static analyses

We took different analyses from the Java coding guidelines collected by the CERT
division of the Software Engineering Institute at Carnegie Mellon University [18].
The CERT division is aimed at improving security and resilience of computer
systems [71]. Among other tasks, CERT identifies coding practices that can be
used to improve the quality of software systems, classifying them as rules or rec-
ommendations [72]. These coding practices are taken from different programming
language experts and other sources such as [63], [73] and [74]. Those recommen-
dations are later discussed and revised by the programming community [18].

The CERT Java coding catalog contains more than 83 recommendations, di-
vided into five different categories: programming misconceptions, reliability, se-
curity, defensive programming and program understandability. We selected 13
recommendations to code them as static analyses, choosing at least two recom-
mendations from each category. The following enumeration describes each rec-
ommendation, its category and identifier, and its original source (its source code
can be consulted in Appendix B, and downloaded from [75]).

1. MET53-J (program understandability) [76]. Ensure that the clone method
calls super.clone(). clone may call another method that transitively calls
super.clone().

2. MET55-J (reliability) [63]. Return an empty array or collection instead of a
null value for methods that return an array or collection. We check all the

31

5.1. Static analyses

return statements and all the types implementing the Collection interface.

3. SEC56-J (reliability) [73]. Do not serialize direct handles to system re-
sources. Serialized objects can be altered outside of any Java program, im-
plying potential vulnerabilities. We detect types implementing Serializable

with non-transient fields derived from system resources such as File, Naming-
Context and DomainManager.

4. DCL56-J (defensive programming) [63, 73, 76]. Do not attach significance
to the ordinal associated with an enum. If the ordinal method is invoked,
this analysis encourages the programmer to replace it with an integer field.

5. MET50-J (program understandability) [63, 76]. Avoid ambiguous or con-
fusing uses of overloading. This analysis detects classes with overloaded
methods with a) the same parameter types in a different order; or b) four
or more parameters in different implementations.

6. DCL60-J (defensive programming) [74, 77]. Avoid cyclic dependencies be-
tween packages. Cyclic dependencies cause issues related with testing, main-
tainability, reusability and deployment.

7. OBJ54-J (programming misconceptions) [63]. Do not attempt to help the
garbage collector by setting local reference variables to null. This analysis
checks the assignment of null to local variables that are no longer needed.

8. OBJ50-J (programming misconceptions) [63, 73]. Never confuse the im-
mutability of a reference with that of the referenced object. It is checked
that the states of objects pointed by final references are not modified (ex-
ample in Section 1.2.1).

9. ERR54-J (reliability) [73]. Use a try-with-resources statement to safely
handle closeable resources. We detect when a variable that implements
AutoCloseable is not initialized in a try-with-resources statement, and the
code may throw an exception before calling close. In that case, a try-with-
resources statement is advised to the programmer.

10. MET52-J (security) [78]. Do not use the clone method to copy untrusted
method parameters. Inappropriate implementations of the clone method
return objects that bypass validation and security checks. That vulnerable
implementation of clone is commonly hidden by the attacker in derived
classes of the cloned parameter. Thus, the analysis checks when clone is
invoked against a parameter in a public method of a public class, and the
type of the parameter is not final (overridable).

11. DCL53-J (defensive programming) [63]. Minimize the scope of variables.
We search for fields that are unconditionally assigned before their usage,
for all the methods in their classes. The analysis encourages the programmer
to use local variables instead.

12. OBJ56-J (security) [79]. Provide sensitive mutable classes with unmodifiable
wrappers. When a given class is mutable because of m modifier methods, it
is checked that one derived class provides an immutable wrapper. In such

32

5.3. Systems measured

wrapper, those m methods must be overridden with implementations where
the state of the object is not modified.

13. NUM50-J (program understandability) [73]. Convert integers to floating
point for floating-point operations. The analysis checks division expressions
where the two operands are/promote to integers, and the result is assigned
to a float or double. In that scenario, there might be loss of information
about any possible fractional remainder.

5.2 Research questions

As mentioned, the analyses described in the previous section will be used to evalu-
ate ProgQuery and related systems. To that aim, we conduct various experiments
to address the following research questions:

1. Does the proposed system provide lower analysis times than related ap-
proaches?

2. Does it provide better scalability for increasing program sizes?

3. Does it provide better scalability for increasing analysis complexity?

4. Is it able to perform complex analyses against huge Java programs in a
reasonable time?

5. Can program analyses be expressed succinctly, in a declarative manner, and
using standard query-language syntax?

6. Are there any drawbacks of our system, compared to related approaches?

5.3 Methodology

We present the selected systems and programs to be measured in our experiments.
Afterwards, we describe how execution time and runtime memory consumption is
measured. We then depict how we configured each system to run the experiments.

5.3.1 Systems measured

We included in our evaluation different systems related to our approach. The
analyses described in Section 5.1 were coded for such systems in order to compare
them (the source code can be downloaded from [75]). These are the selected
systems:

– Wiggle 1.0 [9], a source-code querying system based on a graph data model.
Wiggle represents programs as graph data models, and stores them in Neo4j.
The Cypher graph query language is used to express advanced queries us-
ing syntactic (mainly) and some semantic properties of programs. We use
Neo4j Community 3.5.6 server and Neo4j 3.3.4 embedded. The former mode
provides direct use from the Java client, loading the database engine in the

33

5.3. Data analysis

same JVM process as the client application. The latter mode runs Neo4j
as a separate process via RESTful services [80].

– Semmle CodeQL 1.20, a code analysis platform to perform detailed analyses
of source code [22]. Semmle allows writing queries in QL, an object-oriented
variant of the Datalog logical query language [81]. Semmle CodeQL stores
programs in a PostgreSQL relational database. It promotes variant analysis,
the process of using a known vulnerability as a seed to find similar problems
in the code [82]. Semmle provides a set of existing analyses to facilitate the
variant analysis approach.

– ProgQuery 1.1. We include the latest version of our system in the evalua-
tion. ProgQuery is measured with the same two Neo4j versions we used to
measure Wiggle: Neo4j Community 3.5.6 server and Neo4j embedded 3.3.4.

5.3.2 Programs used

We took the programs to be analyzed from the GitHub Java corpus collected by
the CUP research group of the University of Edinburgh [83]. This corpus provides
14,735 projects with different sizes, taking all the GitHub Java projects with at
least one fork. This code has already been used in other research works, such as
learning coding conventions [84], API mining [85], and database framework usage
analysis [86].

We want to use programs of different sizes to study how the evaluated systems
scale to increasing program sizes. For that purpose, we sorted the programs by
their number of non-empty lines of code and divided them into nine parts, taking
one program from each group. In this way, we have nine programs of different
sizes. Table 5.1 shows the selected programs, a brief description, their percentile
in the CUP corpus, and the number of non-empty lines of code. Considering
all the Java programs in GitHub, the biggest program selected (NFEGuardian-
Shared) is at the 92nd percentile.

5.3.3 Data analysis

The execution time of a Java program is affected by many factors such as just-in-
time (JIT) compilation, hotspot dynamic optimizations, thread scheduling and
garbage collection. This non-determinism at runtime causes the execution time of
Java programs to differ from run to run. For this reason, we use the statistically
rigorous methodology proposed by Georges et al. [87]. To measure execution time
and runtime memory consumption, a two-step methodology is followed:

1. We measure the execution time of running the same program multiple times.
This results in p measurements xi with 1 ≤ i ≤ p.

2. The confidence interval for a given confidence level (95%) is computed to
eliminate measurement errors that may introduce a bias in the evaluation.
The computation of the confidence interval is based on the central limit
theorem. That theorem states that, for a sufficiently large number of sam-
ples (commonly p ≥ 30), x (the arithmetic mean of the xi measurements)

34

5.3. Data analysis

Percentile Program Non-empty
LoC

Program
position in

corpus

8
Accelerometer-for-Android: Android app to
show real-time accelerometer data. 185 1211

17
Yschool-mini-jeyakaran: Java web
application to teach Java programming. 369 2410

25
Clustersoft: Android app to manage
remainders. 618 3597

42
Arithmetic-expression-evaluator: scanner,
parser and interpreter of arithmetic
expressions.

1,404 5962

50
Thumbslug: proxy application to manage
certificates of Candlepin software
subscriptions.

2,086 7168

58
Comm: socket component to handle
communications of the S4 streaming
computing platform.

3,119 8358

75
OpenNLP-Maxent-Joliciel: supervised
machine-learning application for natural
language processing.

7,936 10747

83
Frankenstein: testing framework for Swing
GUI Java applications. 15,308 11951

93
NFEGuardianShared: Web repository for
XML electronic invoices. 55,789 13366

Table 5.1: Programs selected from the CUP GitHub Java corpus (percentile and position refer
to the non-empty lines of code).

is approximately Gaussian distributed, provided that the samples xi are in-
dependent and they come from the same population [87]. Therefore, taking
p = 30, we can compute the confidence interval [c1, c2] using the Student’s
t-distribution as [88]:

c1 = x− t1−α/2;p−1
s√
p

c2 = x+ t1−α/2;p−1
s√
p

where α = 0.05 (95%); s is the standard deviation of the xi measure-
ments; and t1−α/2;p−1 is defined such that a random variable T , which
follows the Student’s t-distribution with p − 1 degrees of freedom, obeys
Pr[T ≤ t1−α/2;p−1] = 1−α/2. In the subsequent figures, we show the mean
of the confidence interval plus the width of the confidence interval relative
to the mean (bar whiskers). If two confidence intervals do not overlap, we
can conclude that there is a statistically significant difference with a 95%
(1−α) probability [87].

Memory consumption is measured following the same two-step methodology.
Instead of measuring execution time, we compute the maximum size of work-
ing set memory used by the process since it was started (the PeakWorkingSet

property) [89]. The working set of a process is the set of memory pages currently
visible to the process in physical RAM memory. The PeakWorkingSet is measured
with explicit calls to the services of the Windows Management Instrumentation

35

5.3. Experimental environment

infrastructure [90].

All the tests were carried out on a 2.10 GHz Intel(R) Xeon(R) CPU E5-2620
v4 (6 cores) with 32GB of RAM running a 64-bit version of Windows 10.0.18362
Professional. We used Java 8 update 111 for Windows 64 bits. The benchmarks
were executed after system reboot, removing the extraneous load, and waiting
for the operating system to be loaded (until the CPU usage falls below 2% and
remains at this level for 30 seconds). To compute average percentages, factors
and orders of magnitude, we use the geometric mean.

5.3.4 Experimental environment

To measure the systems described in Section 5.3.1, various configuration variables
need to be provided (e.g., heap memory size of Neo4j, number of insertions per
transaction, and heap memory used by the Java virtual machine). Runtime
performance of those systems depend on the values of such variables. Therefore,
we need to find the values for which the selected systems perform optimally, in
the above mentioned computer.

We followed the following algorithm to find the optimal values for the config-
uration variables. First, we fix all the variables to their default values. Then,
for each variable, we analyze the influence of that variable on the system perfor-
mance. We select the value when the system converges to its best performance.
This process is repeated for all the variables, until the system performance cannot
be further optimized.

Figure 5.1 shows an example of how two variables influence on runtime perfor-
mance of the system. Above, it is showed how the heap size of our modification
of the Java compiler influences on insertion time (Neo4j embedded). Below, Fig-
ure 5.1 illustrates how insertion times in Neo4j server depend on the number of
insertions per transaction done by ProgQuery and Wiggle. Orange lines in Fig-
ure 5.1 indicate the execution time with the default values; red dots specify the
value chosen by our algorithm. We can see how runtime performance is improved
in both scenarios.

The following enumeration lists the variables that influence the performance
of the selected systems, and the values we get by applying our algorithm:

– Initial (dbms.memory.heap.initial size) and maximum (dbms.memory.heap.-
max size) heap memory size used by Neo4j. For both variables, we choose
500 MB for insertion operations and 1 GB for analyses (queries).

– Neo4j page cache size (dbms.memory.pagecache.size): 16.06 MB for inser-
tion and analysis.

– Number of insertions per transaction (operationsPerTransaction): 500 in-
sertions per transaction.

– Maximum (-Xmx) and initial (-Xms) heap memory used by the Java Virtual
Machine when executing queries: we set both variables to 1 GB.

36

5.4. Increasing program sizes

0

5

10

15

20

25

30

35

40

45

50

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000

Java compiler heap size (MB)

0

50

100

150

200

250

300

350

400

450

500

0 500 1,000 1,500 2,000 2,500

Iterations per transaction

Insertion time Insertion time with default settings Selected setting

In
se

rt
io

n
 t

im
e

 (
se

co
n

d
s)

In
se

rt
io

n
 t

im
e

 (
se

co
n

d
s)

Figure 5.1: Dependency of Java compiler memory (above) and iterations per transaction (be-
low) on insertion time for Neo4j embedded (above) and server (below), when inserting the
Frankenstein program in Table 5.1.

– For insert operations, the startup memory used by our modified Java com-
piler (-J-Xmx and -J-Xms): 2 GB.

– Memory for running queries of Semmle CodeQL: 1 GB.

5.4 Evaluation

5.4.1 Analysis time

We measure and compare runtime performance of the systems described in Sec-
tion 5.3.1. Their scalability related to program size and analysis complexity is
also discussed.

37

5.4. Increasing program sizes

0

1

2

3

4

5

6

Accelerometer Yschool Clustersoft Thumbslug Arithmetic Comm OpenNLP NFEGuardian Frankenstein

ProgQuery server ProgQuery embedded Wiggle server Wiggle embedded Semmle

A
n

a
ly

si
s

ti
m

e
 r

e
la

ti
v

e
 t

o
 P

ro
g

Q
u

e
ry

e
m

b
e

d
d

e
d 11.3 10.2

16 17.3

26.8

Figure 5.2: Average analysis execution time for increasing program sizes (execution times are
relative to ProgQuery embedded).

5.4.1.1 Increasing program sizes

The first comparison, illustrated by Figure 5.2, presents execution time of analyses
for increasing program sizes. We take the size of a program to be the number of
its nodes plus the number of its arcs, using Wiggle’s AST representation. The
values shown are the average times for all the analyses in Section 5.1, relative to
ProgQuery embedded.

For all the programs, ProgQuery server outperforms the rest of the systems.
It is 9.2 times faster than its embedded version. On average, ProgQuery server
performs, respectively, 48, 53 and 245 times better than Semmle, Wiggle server
and Wiggle embedded.

To analyze the scalability of the systems, Figure 5.3 displays the absolute
execution time trends when program sizes increase. All the execution times grow
as program sizes increase, but ProgQuery is the system with the lowest growth.
ProgQuery server, ProgQuery embedded, and Semmle show linear scalability (p-
values of linear regression models are lower than 0.01), and their slopes are,
respectively, 16, 29 and 929.

Figure 5.3 shows how Wiggle performs better than Semmle for shorter pro-
grams, but its execution time grows significantly higher than Semmle, as program
size increases. It seems that the database start-up cost causes an initial perfor-
mance penalty, more noticeable for small programs. Moreover, the additional
semantic information stored by Semmle may cause a decrease in the number of
accesses to the database, providing better results when analyzing bigger pro-
grams.

Even though Wiggle and ProgQuery use the same persistence system (Neo4j),
they show significantly different scalabilities. This is caused by the different
information stored by the two systems. Since ProgQuery stores more semantic
information for each program, it reduces the cost of computing that information
at runtime. This cost becomes more important as program size grows.

38

5.4. Increasing complexity of analyses

0

20

40

60

80

100

ProgQuery server ProgQuery embedded Wiggle server

Wiggle embedded Semmle

A
n

a
ly

si
s

ti
m

e
 (

se
co

n
d

s)

Figure 5.3: Execution time (seconds) trend for increasing program sizes (values shown are the
geometric mean of execution times for all the analyses executed against the given program).

These data provide a response to Research Question 2 (Section 5.2): Prog-
Query scales significantly better than the other systems to increasing program
sizes (we answer Research Question 1 in the following subsection).

5.4.1.2 Increasing complexity of analyses

For each system, we study how the analysis complexity influences its execution
time. We estimate the complexity of each analysis by counting the number of dif-
ferent program representations (Section 3.3) consulted in the analysis. Therefore,
we identify three levels of complexity:

– Easy. The analysis uses the syntactic representation (AST) and at most
another semantic representation.

– Medium. The AST plus two other semantic representations are queried in
the analysis.

– Complex. The analysis uses the AST and three or more semantic represen-
tations.

Table 5.2 shows the program representations used by each analysis and the
level of complexity assigned. All the analyses use the AST, since they all start
by consulting syntactic information. The analysis that uses most representations
(DCL60-J) consults five out of seven.

Figure 5.4 shows the execution times for the three levels of complexity iden-
tified. Values shown are the average analysis times for all the programs in Sec-
tion 5.3.2. ProgQuery server is the system with the best performance, for all the
levels of complexity—in fact, ProgQuery server shows the lowest execution times
for each single analysis executed. Moreover, Wiggle server is the only system that

39

5.4. Increasing complexity of analyses

Analysis AST
Call

Graph
Type
Graph CFG PDG CDG

Package
Graph Complexity

DCL56-J × Easy
MET50-J × Easy
MET52-J × × Easy
MET55-J × × Easy
NUM50-J × × Easy
SEC56-J × × Easy
MET53-J × × × Medium
OBJ54-J × × × Medium
OBJ56-J × × × Medium
DCL53-J × × × × Complex
DCL60-J × × × × × Complex
ERR54-J × × × × Complex
OBJ50-J × × × × Complex

Table 5.2: Program representations used by the different analyses and their level of complexity.

performs better (54%) than ProgQuery embedded, only for easy analyses. For
the remaining cases, ProgQuery embedded outperforms the other systems.

11.3

0

1

2

3

4

5

Easy Medium Complex

A
n

a
ly

si
s

ti
m

e
 r

e
la

ti
v

e
 t

o

P
ro

g
Q

u
e

ry
e

m
b

e
d

d
e

d

ProgQuery server ProgQuery embedded Wiggle server

Wiggle embedded Semmle

15.2
18.5

Figure 5.4: Average execution time for increasing analysis complexity (execution times are
relative to ProgQuery embedded).

Therefore, the answer to Research Question 1 (Section 5.2) is that Prog-
Query server analysis times are significantly lower than the existing systems, for
all the analyses measured. This response also holds for the embedded version, if
we compare it with systems that also use the same kind of persistence store (i.e.,
Wiggle embedded and Semmle).

Figure 5.5 shows how execution time depends on the complexity level of anal-
yses for all the systems. Analysis time grows as complexity increases. The slope
of analysis time growth (linear regression) for Semmle and Wiggle is, respectively,
1.76 and 1.97 orders of magnitude higher than ProgQuery. Therefore, the answer
to Research Question 3 (Section 5.2) is that ProgQuery scales significantly

40

5.4. Limit values

0

20

40

60

80

100

120

Easy Medium Complex

ProgQuery server ProgQuery embedded Wiggle server

Wiggle embedded Semmle

A
n

a
ly

si
s

ti
m

e
 (

se
co

n
d

s)

Figure 5.5: Execution time (seconds) trend for increasing analysis complexity (values shown
are the geometric mean of execution times of all the programs of the given complexity).

better than Semmle and Wiggle for analysis complexity.

For easy analyses, Wiggle performs better than Semmle. For complex queries,
however, it is the other way around. Since most of the information in Wiggle
is syntactic, easy analyses just consult information in the database (most of the
information searched belongs to the AST). As more semantic information is re-
quired, Wiggle analyses need to compute that information from the existing one,
producing a runtime performance cost. In ProgQuery, that computation is not
necessary, because it provides more semantic representations (Section 3.3). Fi-
nally, it seems that Semmle manages to reduce the number of accesses to the
relational database in complex analyses, performing better than Wiggle.

5.4.1.3 Limit values

We also measure the systems’ capability to perform analyses against huge pro-
grams. By using the Google’s BigQuery project [10], we identified the biggest
Java project in GitHub (Medicayundicom), which has 18M lines of code. Then,
we measure analysis time for all the analyses in Section 5.1 against such a huge
project. Since Medicayundicom does not provide maven pom files to compile the
project (a requirement of all the systems evaluated), we combine different existing
Java projects into a single one, until the new project reaches 18M lines of code.

ProgQuery is the only system that runs all the analyses for that program.
Both Semmle and Wiggle prompted memory errors at insert or analysis time, and
hence analyses could not be run. Table 5.3 shows ProgQuery analysis times for
all the queries, under the configuration settings described in Section 5.3.4. That
table gives us the response to Research Question 4 (Section 5.2): ProgQuery
is able to run all the analyses measured against a huge program with an average
execution time of 53 seconds, while most of the analyses are executed in tens of
seconds.

41

5.4. Program analysis expressiveness

Analysis Name Complexity
Execution time

(seconds)

DCL56-J Easy 35.6
MET50-J Easy 82.4
MET52-J Easy 7.9
MET55-J Easy 130.8
NUM50-J Easy 38.3
SEC56-J Easy 7.9
MET53-J Medium 39.0
OBJ54-J Medium 39.1
OBJ56-J Medium 365.4
DCL53-J Complex 172.8
DCL60-J Complex 36.6
ERR54-J Complex 211.6
OBJ50-J Complex 38.1

Table 5.3: ProgQuery execution time (seconds) for analyses in Section 5.1, run against a Java
program of 18M lines of code.

We can see in Table 5.3 that there is not a strong correlation between Prog-
Query analysis complexity and execution time. This is due to two factors. First,
ProgQuery provides much semantic information that does not need to be com-
puted. Second, the overlaid representations offer interconnected nodes of different
kinds, so that queries can combine different information with no additional perfor-
mance cost. Therefore, execution time depends on the number of nodes consulted
(of any representation), rather than on the kind of information consulted.

5.4.2 Program analysis expressiveness

Both Wiggle and ProgQuery use Cypher, a declarative graph query language,
originally intended to be used with the Neo4j database [19]. Its design is focused
on providing the power of SQL, but applied to databases built upon the concepts
of graph theory. Cypher, together with PGQL and G-Core, represent the baseline
for GQL, the upcoming ISO standard graph query language [91].

Semmle provides the QL object-oriented declarative query language [81]. Its
syntax is similar to SQL, but its semantics is based on Datalog, a declarative
logic programming language [23]. QL is the way Semmle provides graph-based
abstractions, since graphs are translated into a relational database. On the con-
trary, Wiggle and ProgQuery store graph representations directly in a Neo4j
database, avoiding that impedance mismatch [25]. Since graph abstractions are
maintained in the persistent storage, the user may utilize different mechanisms to
access such graph program representations. For example, Neo4j can be accessed
with mechanisms other than Cypher, such as the Gremlin programming language
and the Neo4j traversal framework Java API.

Table 5.4 presents the number of tokens (lexical elements), AST nodes and
lines of code of the queries used to implement all the analyses for the three

42

5.4. Memory consumption

Analysis
Tokens AST nodes Lines of Code

PQ Semmle Wiggle PQ Semmle Wiggle PQ Semmle Wiggle
E

a
sy

DCL56-J 70 93 359 30 49 123 3 4 13
MET50-J 190 202 453 95 115 181 6 8 17
MET52-J 173 166 351 74 81 180 5 15 11
MET55-J 159 154 590 67 77 248 7 11 21
NUM50-J 221 292 551 104 160 270 5 34 14
SEC56-J 112 157 589 49 78 253 5 15 34

Mean (easy) 144 167 471 65 87 202 5 12 17

M
ed

iu
m MET53-J 139 192 1,415 70 104 661 6 24 41

OBJ54-J 127 348 1,316 58 177 645 5 31 42
OBJ56-J 772 783 2,439 395 403 1,265 25 48 54

Mean (medium) 239 374 1,656 117 195 814 9 33 45

C
om

p
le

x DCL53-J 507 878 1,195 253 457 638 15 74 35
DCL60-J 77 380 1,467 35 201 644 3 43 44
ERR54-J 691 990 5,528 335 538 2,765 18 110 275
OBJ50-J 126 1,392 3,061 59 757 1,533 5 142 75

Mean (complex) 241 823 2,334 115 440 1,149 8 84 75

Mean (total) 190 329 1,030 88 173 476 7 27 34

Table 5.4: Number of tokens (lexical elements), AST nodes, and lines of code of the queries
used to write all the analyses in the different systems (PQ stands for ProgQuery).

different systems. These measures are an estimate of how much code is needed
to write the different analyses in each system. We can see how ProgQuery is the
system that needs less code to express the analyses. Even though ProgQuery and
Wiggle use the same language (Cypher), on average ProgQuery requires 18% the
code used by Wiggle. Moreover, the code in Semmle is almost 2 times the code
in ProgQuery.

These differences among analysis code are mainly caused by the information
stored by the systems. Since ProgQuery stores seven different program repre-
sentations (Section 3.3), analyses do not need to use additional code to compute
such information, reducing the length the code. This fact also ensures that the
source code of ProgQuery analyses is not increased from medium to complex
complexities, unlike the other systems (Table 5.4).

After this study about expressiveness, we can answer Research Question 5
(Section 5.2). ProgQuery provides an expressive and declarative mechanism to
express program analysis. Although no standard graph query language exists yet,
the language used by ProgQuery represents a strong influence on the upcoming
standard.

5.4.3 Memory consumption

Figure 5.6 shows the average RAM memory consumed by the five systems eval-
uated, under the configuration settings described in Section 5.3.4. ProgQuery
embedded is the system that consumes fewer resources (Wiggle embedded and
Semmle consume 22% and 42% more memory). The extra semantic information
stored by ProgQuery in the database causes the lower consumption of RAM mem-

43

5.4. Insertion time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ProgQuery server ProgQuery embedded Wiggle server Wiggle embedded Semmle

R
A

M
 m

e
m

o
ry

co

n
su

m
p

ti
o

n
(G

B
)

Figure 5.6: RAM memory consumed at analysis execution.

ory resources, which the other systems use to compute such information. The
same difference appears when we compare the two Neo4j server systems: Wiggle
consumes 5% more memory than ProgQuery. The difference between ProgQuery
server and Semmle (almost one factor) is caused by the memory consumption of
Neo4j server, when compared to its embedded version: 1 GB.

Since ProgQuery stores more information in the database that the other sys-
tems, we also compare the sizes of each database. The average database sizes per
program for ProgQuery are, respectively, 25% and 97% greater than Semmle and
Wiggle.

5.4.4 Insertion time

ProgQuery provides runtime performance and expressiveness benefits mainly be-
cause of the additional program representations stored for each program. How-
ever, the process of computing that supplementary information at compile time
plus its storage in the database involve extra insertion time. For this reason, we
measure insertion time for all the systems but Semmle. We could not measure
Semmle because it only provides insertion through its LGTM web application [92].
The user provides a code repository identifier, and LGTM compiles the program,
returning the relational database file containing the program representation.

In Figure 5.7, we can see how ProgQuery server is the system with the highest
insertion time: on average, 60% more time than the same version for Wiggle.
This difference is caused by the additional program representations stored in
our system. However, as program size grows, the difference between ProgQuery
and Wiggle server decreases. This is because of an optimization we develop at
compile time, based on avoiding the use of reflection [93] performed by Wiggle
(Section 2.1).

For the embedded versions, ProgQuery performs slightly better than Wiggle.
Average insertion times for Wiggle are 6% higher. Our optimization makes Prog-
Query perform better, even though it inserts more nodes and arcs than Wiggle.

44

5.4. Insertion time

0

0.2

0.4

0.6

0.8

1.0

Accelerometer Yschool Clustersoft Thumbslug Arithmetic Comm OpenNLP NFEGuardian Frankenstein

ProgQuery server ProgQuery embedded Wiggle server Wiggle embedded Javac

In
se

rt
io

n
 t

im
e

 r
e

la
ti

v
e

 t
o

P
ro

g
Q

u
e

ry
se

rv
e

r

Figure 5.7: Insertion times for increasing program sizes, relative to ProgQuery server.

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Accelerometer Yschool Clustersoft Thumbslug Arithmetic Comm OpenNLP NFEGuardian Frankenstein

ProgQuery server ProgQuery embedded Wiggle server Wiggle embedded

In
se

rt
io

n
 t

im
e

 p
e

r
a

rc
/n

o
d

e

re
la

ti
v

e
 t

o
 P

ro
g

Q
u

e
ry

se
rv

e
r

Figure 5.8: Insertion times per node/arc for increasing program sizes, relative to ProgQuery
server.

Figure 5.7 also displays compilation time used by the original Java compiler
(without our plug-in). By comparing that value with the rest of the measures,
we can estimate the time each system needs to create the representations and
store them in the database. Compilation time represents 17.8%, 11.8%, 16.8%
and 7.4% of the overall insertion time for, respectively, Wiggle embedded and
server, and ProgQuery embedded and server.

Figure 5.8 shows insertion times per node or arc stored. This figure enables us
to analyze the performance of each system relative to the information stored. We
can see how our optimization makes our server be more efficient than Wiggle (18%
faster for server and 101% for embedded), when measuring insertion time per
element stored. Neo4j server seems to perform additional operations at insertion
to optimize queries, so our optimization is more evident in the embedded version
than in the server one.

Research Question 6 (Section 5.2) can be answered after analyzing runtime
memory consumption and insertion time. The main drawback of ProgQuery
is the increase of insertion time, but only for the server version. The average
insertion time increase is 60%, but this drops as program size grows. Another
minor drawback is database size, which shows increases from 25% up to 97%.

45

Chapter 6

Use Case Scenario 2:
Programmer Classification

In this chapter, we describe how we used the ProgQuery compiler plug-in to
extract syntactic information, used to classify and score the level of programming
expertise of developers, by analyzing the source code they write [17].

With predecitive models to classify programmers, new tools and IDEs1 to
teach programming can be developed. Such tools would provide different hints to
programmers depending on their level of expertise. A novice Java programmer
could be instructed to use inheritance and polymorphism; for average develop-
ers, functional idioms using lambda expressions could be introduced [94]; and
advanced patterns to avoid performance bottlenecks or security vulnerabilities
could be advised to expert programmers [95].

A system capable of classifying programmers by their expertise level can also
be used to analyze the recurrent idioms written by expert programmers. Such
idioms could be published and used to improve the skills of average program-
mers. Likewise, programming lecturers can identify the recurrent programming
patterns used by beginners, explaining how they could be improved with better
alternatives.

A model that scores the expertise level of programmers can be used to check
the improvement of student’s programing skills during a programming course.
The model would identify those students that do not obtain the expected level of
programming expertise, so lecturers could help them at the earliest. It would also
identify those who have better programming skills, so they could be motivated
with additional activities.

The scoring model could also be used by an Intelligent Tutoring System
(ITS) [20] that considers how the student evolves. If the student score increases,
more advanced programming constructs will be taught. If the score stays the
same, the ITS will offer new activities to strengthen the new language construct
taught. Finally, if the score drops, the system will revisit some language con-
structs formerly explained. In this case, the language construct to be revisited

1The classifier could also be included in existing IDEs such as Eclipse, IntelliJ and NetBeans.

46

6.1. Interpretable white-box models

public class MyClass {

public double myMethod(int a, int

b) {

double temp = this.m(a) /

this.m(b);

return temp * 2;

}

private int myField;

…

}

public class MyClass {

public double myMethod(int a, int

b) {

double temp = this.m(a) /

this.m(b);

return temp * 2;

}

private int myField;

…

}

public class MyClass {

public double myMethod(int a, int

b) {

double temp = this.m(a) /

this.m(b);

return temp * 2;

}

private int myField;

…

}

public class MyClass {

public double myMethod(int a) {

double temp = this.m(a)/this.myField;

return temp * 2;

}

private int myField;

…

}

…

…

…

…

…

…

Tree

representation

Program node
Types nodes

Field nodes
Method
nodes

Statement
nodes

Expression nodes

MyClass

myField

myMethod

return temp*2;

temp*2

Program as a collection of types

(classes, interfaces and enumerations)

Figure 6.1: Program representation as heterogeneous compound syntax trees.

would depend on the idioms coded by the student.

6.1 Requirements

We face the challenge of building syntactic models to classify and score the pro-
gramming level of expertise of Java developers. What follows are the main re-
quirements we must fulfill.

6.1.1 Different levels of syntax constructs

When classifying programmers, different fragments of their code could be ana-
lyzed. Therefore, a classifier must consider different levels of syntax constructs,
such as expressions, statements, methods, fields, types (classes, interfaces and
enumerations) and whole programs (Figure 6.1). A whole program will give the
classifier more information to label the developer, but a useful tool should give
hints to the programmer when one single statement, method or even expression
is typed. Therefore, a programmer classifier should be constructed with different
models that classify different levels of syntax constructs (expressions, statements,
methods, fields, types and whole programs).

6.1.2 Heterogeneous compound structures

Figure 6.1 shows that the syntax of the different language constructs are het-
erogeneous. For example, the syntax of methods is different to the syntax of
statements and expressions. Moreover, many program constructs are composed
of other program constructs. For example, the assignment statement “temp =

this.m(a)/this.myField;” comprises the two expressions on the left- and right-
hand side of the assignment operator (the right-hand side is also subdivided into
other subexpressions). Likewise, object-oriented programs are composed of a set
of types, types may comprise methods and fields, methods contain statements,
and statements and fields are commonly built using expressions. Therefore, a
Java syntax classifier should be able to label those heterogeneous compound AST
structures.

47

6.2. Objective

6.1.3 Interpretable white-box models

As mentioned, the syntax patterns used to classify expert and novice program-
mers are valuable information. We described how they could be used to assist
lecturers in a programming course, and to create Intelligent Tutoring Systems.
Additionally, we propose to use the extracted patterns in a feature learning pro-
cess (Section 6.3) to build classifiers with different kinds of syntax constructs.

6.1.4 Scalability

Model construction must be scalable, since we follow the big code philosophy of
using massive codebases. It must allow the construction of classifiers from millions
of instances. For example, just the dataset we used to build the expressions
classifier holds 13,498,005 instances (see Section 6.4.1).

6.1.5 Models from trees

An important challenge of syntax pattern classification is to build predictive mod-
els from trees, since most supervised classification algorithms require instances
(individuals or rows) to be represented as fixed size n-dimensional vectors [49].
While there are standard techniques to compute such vectors for documents, im-
ages and sound, there are no similarly standard representations for programs [15].
There exist alternative structured prediction methods such as Graph Neural
Networks (GNNs) and Conditional Random Fields (CRFs)—discussed in Sec-
tion 2.6—, but they unfortunately seem to suffer sufficiently high computation
and space costs to prevent them from being used with massive codebases [96].

6.2 Objective

We use decision trees (DTs) as the supervised learning algorithm, because DTs
create interpretable white-box models, and perform well with large datasets [97].
They are also able to handle both numerical and categorical data.

In order to build DTs, we tabularize the ASTs of the input programs. We
represent as features the main syntactic characteristics of each kind of node (ex-
pression, statement, method, field, type and program), including its category
(e.g., arithmetic operation, method invocation, field access, etc.), and multiple
pieces of information about their context (data about its parent and child nodes,
its role in the enclosing node, its depth and height, etc.).

We create different datasets for each kind of node. Then, we build different
homogeneous DT models that classify each kind of syntax construct (e.g., expres-
sions, statements, methods, etc.). Finally, we take the patterns discovered by the
homogeneous models to build new classifiers of compound heterogeneous syntax
constructs (e.g., a method classifier that also considers the syntax patterns of the
statements and expressions written within the method).

The main objectives of this ProgQuery use case scenario are:

48

6.3. Methodology

1. A new feature learning approach to classify great amounts of compound
heterogeneous tree structures.

2. A system to classify the programming expertise level of Java developers by
analyzing the syntax constructs of their code. The system can also be used
to measure the probability of a code fragment to be written by an expert
or beginner.

3. The identification of Java syntax patterns used by both expert and novice
programmers.

6.3 Methodology

Figure 6.2 shows the architecture of our system, and Algorithm 1 details how
it works. We first provide a brief high-level description of the modules in the
architecture. Forthcoming subsections detail the behavior of each module.

The input of the system is a database of labeled Java programs (expert or
beginner); the output is a collection of heterogeneous decision tree models to
classify programmers, plus the syntax patterns used by the classifier. Such pat-
terns describe common idioms used by experts and beginners.

First, we use ProgQuery to create six homogeneous datasets with different
features for each syntax construct: expressions, statements, methods, fields, types
and programs. For each node in the ASTs, we store its features in a homogeneous
dataset defined for that syntax construct. Such features include its syntactic
category and context information (see Section 6.3.1). Then, for each syntax
construct, we create a DT model capable of classifying all the different types of
AST nodes defined for that syntax construct. For example, the expression DT
model classifies any arithmetic, comparison, logical, variable, literals and cast
expressions.

The next step is to obtain the syntax patterns from the homogeneous DT
models (Section 6.3.2). DTs are traversed to obtain the decision rules used by
the classifiers. The homogeneous syntax patterns are the antecedent parts of
such decision rules. Those patterns are then reduced in number, and simplified
to make them more readable (Section 6.3.3).

Once the homogeneous syntax patterns are reduced in number and simplified,
we create the heterogeneous models (Section 6.3.4). As mentioned, AST struc-
tures are heterogeneous (e.g., programs, types, methods, fields, etc.) and some
of them comprise other ones (e.g., programs contain types, and types contain
methods and fields). Therefore, each heterogeneous dataset for one syntax con-
struct (e.g., program) is built with its homogeneous dataset, plus all the syntax
patterns of the subASTs it may contain (e.g., methods, fields, etc.). In this way,

2The pseudocode in Algorithm 1 uses the following functions: classificationRules, described
in Section 6.3.2; select and simplify, depicted in Section 6.3.3; potentialChildNodesOf, which
returns the syntax constructs that may occur as subtrees of another given syntax construct;
and columns, which returns the syntax pattern columns in a given dataset.

49

6.3. Methodology

…

……

FE1 FE2 … FEx FS1 FS2 … FSy FT1 FT2 … FTz

……

…

…

…

…

…

FP1 FP2 … FPp

PE
1

PE
2

PE
e

PS
1

PS
2

PS
s

PT
1

PT
2

PT
t

PE’
1

PE’
e’

PS’
1

PS’
s’

PT’
1

PT’
t’

PE’1 … PE’e’ PS’1 … PS’s’ PT’1 … PT’t’ FP1 FP2 … FPp

…

…

…

…

…

Heterogenous Syntax Pattern Extraction

Homogeneous Datasets Construction

Expressions Statements ProgramsTypes

Homogeneous datasets

Decision tree models

Syntax patterns

Syntax patterns selected

Heterogeneous dataset

Heterogeneous

decision tree model

D
e

ci
si

o
n

 t
re

e

m
o

d
e

ls

H
o

m
o

g
e

n
e

o
u

s

d
a

ta
se

ts

S
y

n
ta

x

p
a

tt
e

rn
s

S
y

n
ta

x

p
a

tt
e

rn
s

(r
e

d
u

ce
d

 a
n

d

si
m

p
li

fi
e

d
)

H
e

te
ro

g
e

n
e

o
u

s

d
a

ta
se

t

H
e

te
ro

g
e

n
e

o
u

s

d
e

ci
si

o
n

 t
re

e
 m

o
d

e
l

Homogeneous

dataset

…

Homogeneous Syntax Pattern Extraction

Syntax Pattern Selection and Simplification

Heterogeneous Dataset Construction

Heterogeneous

syntax patterns

Homogeneous Models Construction

Heterogeneous Model Construction

Program1 Program2 … Programn

Java source code

Labeled Java

source code

Figure 6.2: Architecture of the feature learning process.

50

6.3. Methodology

Input : sourceCodeDB : collection of labeled Java programs.
Output: heteroDT : decision tree models, heteroPatterns: syntax patterns.

// Homogeneous model construction

foreach syntaxConstr in {expression, statement, method, field, type, program} do
// Homogeneous dataset construction

Define the structure of homoDSsyntaxConstr dataset, including its syntactic category
and information about its context

foreach AST in sourceCodeDB do
foreach node of type syntaxConstr in AST do

Include the node features and context information as a record (instance) in
homoDSsyntaxConstr dataset

end

end
// Homogeneous model construction

Build a homoDTsyntaxConstr DT model using the homoDSsyntaxConstr dataset
// Homogeneous syntax pattern extraction

homoPatternssyntaxConstr ← classificationRules(homoDTsyntaxConstr)
// Syntax pattern selection and simplification

homoPatternssyntaxConstr ← select(homoPatternssyntaxConstr)
homoPatternssyntaxConstr ← simplify(homoPatternssyntaxConstr)

end
// Heterogeneous model construction

foreach syntaxConstr in {expression, statement, method, field, type, program} do
// Heterogeneous dataset construction

Define the structure of heteroDSsyntaxConstr dataset, including all the features
(columns) of homoDSsyntaxConstr

foreach childSyntaxConstr in potentialChildNodeOf(syntaxConstr) do
Add to the structure of heteroDSsyntaxConstr dataset one feature (column) per

syntax pattern in homoPatternschildSyntaxConstr

end
Copy all the values from homoDSsyntaxConstr dataset to heteroDSsyntaxConstr

foreach instance in heteroDSsyntaxConstr do
foreach syntaxPattern in columns(heteroDSsyntaxConstr) do

Update the (instance, syntaxPattern) cell in heteroDSsyntaxConstr with the
percentage of occurrences of syntaxPattern in the subASTs of the AST
represented by instance

end

end
// Heterogeneous model construction

Build a heteroDTsyntaxConstr DT model using the heteroDSsyntaxConstr dataset
// Heterogeneous syntax pattern extraction

heteroPatternssyntaxConstr ← classificationRules(heteroDTsyntaxConstr)
end

Algorithm 1: Pseudocode describing the proposed method2.

51

6.3. Homogeneous datasets and models construction

Production Syntactic category

expression → expression (‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’) expression Arithmetic (binary)
| expression (‘>’ | ‘>=’ | ‘<’ | ‘<=’ | ‘==’ | ‘!=’) expression Comparison
| expression (‘&&’ | ‘||’) expression Logic (binary)
| expression (‘&’ | ‘|’ | ‘ˆ’) expression Bitwise (binary)
| expression ‘instanceof’ type Instance of
| expression (‘=’ | ‘+=’ | ‘-=’ | . . .) expression Assignment
| expression (‘>>’ | ‘<<’ | ‘>>>’) expression Shift
| expression ‘?’ expression ‘:’ expression Conditional
| (‘++’ | ‘--’) expression Inc-Dec prefix
| expression (‘++’ | ‘--’) Inc-Dec postfix
| (‘+’ | ‘-’) expression Arithmetic (unary)
| ‘!’ expression Logic (unary)
| ‘∼’ expression Bitwise (unary)
| ‘(’ type ‘)’ expression Cast
| expression ‘.’ ID Field access
| expression ‘::’ ID Method reference
| expression ‘[’ expression ‘]’ Indexing
| expression ‘(’ (expression (‘,’ expression)*)? ‘)’ Invocation
| lambda parameters ‘->’ lambda body Lambda
| ‘new’ type ‘(’ (expression (‘,’ expression)*)? ‘)’ New object
| ‘new’ type (‘[’ expression ‘]’)+ (‘[’ ‘]’)* New array
| ID Identifier
| INT LITERAL | CHAR LITERAL | . . . Int, char literal . . .

Figure 6.3: Feature abstraction function for the syntactic category of expressions.

heterogeneous classifiers learn from not only their homogeneous features, but also
the most relevant syntax patterns of their subASTs.

The last step of the process involves extracting the heterogeneous syntax pat-
terns from the heterogeneous DT models (Section 6.3.5), the same way as we
did with the homogeneous ones. The extracted patterns represent common Java
idioms used by experts and beginners.

6.3.1 Homogeneous datasets and models construction

As mentioned, classical supervised learning algorithms work on feature vectors : n-
dimensional vectors of features that represent each instance (i.e., each individual
in a given problem). Our approach is to translate homogeneous syntax constructs
(expressions, statements, etc.) into vectors of features. For each syntax construct,
we define a feature abstraction set of functions f that map each AST node to a
numeric value encoding one property [49]. Given the set of feature abstractions
f1, . . . , fn, we can represent a given AST t as the feature vector [f1(t), . . . , fn(t)].
In this way, feature abstraction functions represent a parameterizable mechanism
to translate ASTs as feature vectors.

The first feature abstraction function we define is the syntactic category of each
node in the AST. Figure 6.3 shows the syntactic category feature abstraction for
Java expressions (we use the ANTLR meta-language notation [98]). This feature
simply denotes the kind of expression an AST node represents (its syntactic
category).

52

6.3. Homogeneous syntax pattern extraction

Name Description

Category Syntactic category of the current node, detailed in
Figure 6.3.

First, second and third child Syntactic category of the corresponding child node.
Parent node Syntactic category of the parent node.
Role Role played by the current node in the structure of

its parent node.
Height Distance (number of edges) from the current node to

the root node in the enclosing type (class, interface
or enumeration).

Depth Maximum distance (number of edges) of the longest
path from the current node to a leaf node.

Table 6.1: Feature abstractions used for expressions.

Besides its syntactic category, we also use ProgQuery to gather context infor-
mation of AST nodes. Each AST node occurs in some surrounding context (e.g.,
parent and child nodes), and we want the classifier to make decisions based on
such contexts. For example, object construction using the new operator does not
discriminate the level of expertise. However, our system detects that beginners
rarely use such expression to initialize a final field in a class. Thus, the context
of a non-discriminating expression may be discriminating.

Table 6.1 includes the context information stored for expressions (the features
used for the rest of syntax constructs can be consulted in Appendix C). We use
feature abstraction functions to represent the syntactic categories of its three
potential child nodes (if no child exits, e.g. unary expressions, the feature is
assigned zero), together with its parent. We also store the role that the expression
is playing in the parent node. For example, if the parent is the conditional ternary
operator, the current node could be playing the role of the condition (first child
node), the if-true expression (second child node) or the if-false expression (third
child node). As shown in Table 6.1, we also store the node depth and height in
the AST.

To fill the datasets with the syntactic information taken from the labeled source
code, we used the ProgQuery Java compiler plug-in (Section 3.2)1. We get the
syntactic representation of Java programs, and convert the AST structures into
the tabular information defined for each syntax construct. Once the homogeneous
datasets for the different syntax constructs are built, we create the homogeneous
DT models.

6.3.2 Homogeneous syntax pattern extraction

We get the classification rules from the homogeneous decision trees. DTs are
traversed with an instance of the Visitor design pattern [33], storing the paths
from root to leaf nodes as classification rules. The antecedents of the classifica-

1Cypher could have been used to extract the syntactic information with ProgQuery. How-
ever, we started the program classification project before ProgQuery was finished.

53

6.3. Heterogeneous dataset and model construction

tion rules represent syntax patterns, and the consequent is the outcome of the
classification. For example, one decision rule for expressions is:

if category(node) == assignment
and category(first child(node)) == field access
and category(second child(node)) == new object
and role in parent(node) == expression

then expertise level = expert

This rule classifies the example expression “obj1.m(obj2.f = new MyClass())”
as code written by an experimented programmer. For this rule, the syntax pat-
tern gathered is an assignment that plays the role of an expression (instead of
statement), its left-hand side expression is a field access, and the right-hand side
is an object construction.

6.3.3 Syntax pattern selection and simplification

The heterogeneous datasets include one feature per homogeneous syntax pattern
of their potential subASTs. This process would produce a huge number of fea-
tures, since we expect the number of homogenous patterns to be high. Moreover,
the compound nature of ASTs make the number of features to be even higher.
For example, the heterogeneous features for programs include the syntax patterns
of types, methods, fields, statements and expressions.

Our intention is thus to reduce the number of patterns with the minimal reduc-
tion of the accuracy of the classifier, finding a trade-off between these two conflict-
ing variables. To this end, we consider two measures of syntax patterns: coverage
and confidence [99]. Coverage is defined as the relative number of instances that
satisfy the pattern (how frequently the pattern appears in the dataset):

Coverage(pattern) =
occurrences of pattern in dataset

number of instances
(6.1)

Confidence is a measure for the whole classification rule, not just the an-
tecedent. The confidence of a rule is an indication of how often a rule has been
found to be true:

Confidence(rule) =
instances fulfilling the rule

occurrences of rule antecedent in dataset
(6.2)

We analyze the influence of these two measures on the accuracy of the classifier.
Then, we discard all those rules that do not involve a significant reduction in the
classifier performance (experimental results are presented in Section 6.4.3). We
also perform some rule simplifications to make syntax patterns more readable.

54

6.4. Evaluation

6.3.4 Heterogeneous dataset and model construction

The previous pattern extraction and selection processes undertake automatic fea-
ture learning to build the final heterogeneous compound classifiers. The dataset
of each syntax construct is made up of the selected syntax patterns of their
subASTs (Section 6.3.3), together with the features of the corresponding homo-
geneous dataset (Section 6.3.1)—see Figure 6.2 and Algorithm 1. The outcome
is a collection of different datasets that are used to build the final heterogeneous
compound models.

In the heterogeneous datasets, we set the value of each syntax pattern fea-
ture to the percentage of occurrence of such patterns. For each compound in-
stance (e.g., one statement), we count the syntax patterns that its child nodes
(its subexpressions) fulfill. Then, the cells for such syntax patterns are filled in
with the percentage of occurrence of the pattern in the AST represented by that
instance (statement). In this way, the homogeneous features of one syntax con-
struct are enriched with the syntax patterns of its child subASTs, providing bet-
ter classification performance. In Figure 6.2, the homogeneous program features
(FP1, FP2, . . . , FPp) are enriched with all the heterogeneous syntax patterns that
could be found in the program subASTs: types (PT ′1, . . . , PT

′
t′), methods, fields,

statements (PS ′1, . . . , PS
′
s′) and expressions (PE ′1, . . . , PE

′
e′).

From the implementation point of view, much computation time is required to
check whether subtrees in a program fulfill a specific syntax pattern. To optimize
this operation, we convert all the syntax patterns to SQL queries against the
homogeneous datasets in the database. The premises in the pattern are translated
to SQL “where” clauses. Those queries are executed programmatically, and their
results are used to fill in the heterogeneous datasets.

6.3.5 Heterogeneous syntax pattern extraction

As with the homogeneous datasets, we traverse the resulting heterogeneous DTs
to obtain the final heterogeneous syntax patterns. Each classification rule ob-
tained represents a compound syntax pattern for a given programming expertise
level. Such rules are expressed not only with features of the syntax construct to
be classified, but also with syntax patterns for its child nodes.

6.4 Evaluation

In this section, we evaluate the performance of the proposed system to label Java
programmers according to their expertise level. We first describe the experimental
data (Section 6.4.1) and environment (Section 6.4.2). Then, we describe and show
the results of the following experiments within the framework of the proposed
system:

1. Syntax pattern selection (Section 6.4.3). This experiment applies the method
for pattern selection described in Section 6.3.3 to reduce the number of syn-
tax patterns taken from different DTs.

55

6.4. Experimental environment

2. Heterogeneous AST classification (Section 6.4.4). Evaluates the accuracy of
DTs to classify heterogeneous ASTs. DTs are compared with the existing
related work, and other common machine-learning approaches.

3. Heterogeneous syntax pattern extraction (Section 6.4.5). We analyze the
final syntax patterns obtained by our system.

4. Scoring the expertise level of programmers (Section 6.4.6). The hetero-
geneous dataset is used to score the programming expertise level of Java
developers.

5. Execution time of the proposed method (Section 6.4.7). We measure the
execution time required for each module of the architecture described in
Section 6.3.

6.4.1 Experimental data

To build the datasets, we took Java code from different sources and labeled them
as either beginner or expert programmer. For beginners, we gathered code from
first year undergraduate students in a Software Engineering degree at the Uni-
versity of Oviedo. We took the code they wrote for the assignments in two year-1
programming courses in academic years 2017/18 and 2018/19. All the code was
100% written by students from scratch. Overall, we collected 35,309 Java files
from 3,884 programs.

For expert programmers, we took the source code of different public Java
projects in GitHub. We selected active projects with the highest number of
contributors: Chromium, LibreOffice, MySQL, OpenJDK and Amazon Web Ser-
vices. These software products are implemented with 43,775 Java files in 137
programs (AWS comprises 133 different projects).

We used ProgQuery to get the syntactic information (features in the homoge-
neous dataset) from the Java code. We gather all the values for the features of
the different syntax constructs, filling in the values in the homogeneous datasets.
Then, we label each instance with its expertise level.

Table 6.2 shows the number of AST nodes. To balance data, we randomly
removed instances from the over-representing class to get the same exact number
of instances for both classes (final column in Table 6.2).

6.4.2 Experimental environment

To implement the experiments, we used Python 3.7.2 and scikit-learn 0.21.1.
All the datasets were stored in a PostgreSQL database 11.3. Since PostgreSQL
limits the maximum number of columns to 1600, we modified its open source
implementation to allow 12,800 columns (features). We run all the code in a Dell
PowerEdge R530 server with two Intel Xeon E5-2620 v4 2.1GHz microprocessors
(32 cores) with 128GB DDR4 2400MHz RAM memory, running CentOS operating
system 7.4-1708 for 64 bits.

56

6.4. Syntax pattern selection

Beginner Expert Total Final

Expressions 4,616,807 8,881,198 13,498,005 9,233,614
Statements 1,304,585 2,292,791 3,597,376 2,609,170
Methods 237,285 370,618 607,903 474,570
Fields 96,175 135,826 232,001 192,350
Types 35,910 58,719 94,629 71,820
Programs 3,884 137 4,021 274

Total 6,294,646 11,739,289 18,033,935 12,581,798

Table 6.2: Number of AST nodes.

DTs were created with the CART algorithm implemented by scikit-learn (De-
cisionTreeClassifier) [100]. CART constructs binary trees using the feature
and threshold that yield the largest information gain at each node. This imple-
mentation of decision trees permits the use of both categorical and numerical data.
We selected the best hyper-parameters with exhaustive parallel search across com-
mon parameter values (GridSearchCV), using stratified randomized 10-fold cross
validation (StratifiedShuffleSplit). For the hyper-parameter to measure the
quality of a split, we tried gini and entropy; for selecting the strategy to choose
the split at each node, we tried best and random.

6.4.3 Syntax pattern selection

With our source code database of 35,309 Java files, we generated the six homo-
geneous datasets detailed in Table 6.2. On aggregate, the datasets contain 12.5
million AST nodes (instances). The six homogeneous DT models were created,
and syntax patterns were extracted as explained in Section 6.3.2. That pat-
tern extraction process produced 45,590 patterns for all the homogeneous models
(10,562 for expressions; 28,163 for statements; 4,806 for methods; 336 for fields;
1,702 for types; and 21 for programs). Since this number poses high dimension-
ality to build a predictive model [101], we define the mechanism to reduce the
number of syntax patterns described in Section 6.3.3.

We want to reduce the number of syntax patterns with the minimal reduction
of classifier accuracy. To this aim, we analyze the influence of rule (syntax pat-
tern) coverage, confidence, precision and recall on the accuracy of the whole DT
classifier. Figure 6.4 presents the results. For each measure, it shows the accuracy
of the classifier (y-axis) built with n% of the rules (x-axis) with the highest cov-
erage, confidence, precision and recall. Figure 6.4 shows how, for all the datasets,
coverage was the measure that selected the lowest number of patterns with the
highest accuracy of the classifier.

Sorting the classification rules by coverage, we have to choose a percentage of
rules (preferably low) with little penalty on the classifier accuracy. To this end,
we used the Coefficient of Variation (CoV), defined as the ratio of the standard
deviation to the mean. We measured the CoV of the classifier accuracy for the
last ten percentages of rules in Figure 6.4, and selected the first percentage of
rules where such CoV is lower than 2%. As shown in Figure 6.4, that value

57

6.4. Heterogeneous AST classification

Confidence Coverage Precision Recall

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0
%

2
%

4
%

6
%

8
%

1
0
%

1
2
%

1
4
%

1
6
%

1
8
%

2
0
%

2
2
%

2
4
%

2
6
%

2
8
%

3
0
%

3
2
%

3
4
%

3
6
%

3
8
%

4
0
%

4
2
%

4
4
%

4
6
%

4
8
%

5
0
%

5
2
%

5
4
%

5
6
%

5
8
%

6
0
%

6
2
%

6
4
%

6
6
%

6
8
%

7
0
%

7
2
%

7
4
%

7
6
%

7
8
%

8
0
%

8
2
%

8
4
%

8
6
%

8
8
%

9
0
%

9
2
%

9
4
%

9
6
%

9
8
%

1
0

0
%

A
cc

u
ra

cy
 o

f
th

e
 c

la
s
si

fi
e

r

Percentage of rules

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0
%

2
%

4
%

6
%

8
%

1
0

%

1
2

%

1
4

%

1
6

%

1
8

%

2
0

%

2
2

%

2
4

%

2
6

%

2
8

%

3
0

%

3
2

%

3
4

%

3
6

%

3
8

%

4
0

%

4
2

%

4
4

%

4
6

%

4
8

%

5
0

%

5
2

%

5
4

%

5
6

%

5
8

%

6
0

%

6
2

%

6
4

%

6
6

%

6
8

%

7
0

%

7
2

%

7
4

%

7
6

%

7
8

%

8
0

%

8
2

%

8
4

%

8
6

%

8
8

%

9
0

%

9
2

%

9
4

%

9
6

%

9
8

%

1
0

0
%

A
cc

u
ra

cy
 o

f
th

e
 c

la
ss

if
ie

r

Percentage of rules

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0
%

2
%

4
%

6
%

8
%

1
0
%

1
2
%

1
4
%

1
6
%

1
8
%

2
0
%

2
2
%

2
4
%

2
6
%

2
8
%

3
0
%

3
2
%

3
4
%

3
6
%

3
8
%

4
0
%

4
2
%

4
4
%

4
6
%

4
8
%

5
0
%

5
2
%

5
4
%

5
6
%

5
8
%

6
0
%

6
2
%

6
4
%

6
6
%

6
8
%

7
0
%

7
2
%

7
4
%

7
6
%

7
8
%

8
0
%

8
2
%

8
4
%

8
6
%

8
8
%

9
0
%

9
2
%

9
4
%

9
6
%

9
8
%

1
0
0

%

A
cc

u
ra

cy
 o

f
th

e
 c

la
ss

if
ie

r

Percentage of rules

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0
%

2
%

4
%

6
%

8
%

1
0

%

1
2

%

1
4

%

1
6

%

1
8

%

2
0

%

2
2

%

2
4

%

2
6

%

2
8

%

3
0

%

3
2

%

3
4

%

3
6

%

3
8

%

4
0

%

4
2

%

4
4

%

4
6

%

4
8

%

5
0

%

5
2

%

5
4

%

5
6

%

5
8

%

6
0

%

6
2

%

6
4

%

6
6

%

6
8

%

7
0

%

7
2

%

7
4

%

7
6

%

7
8

%

8
0

%

8
2

%

8
4

%

8
6

%

8
8

%

9
0

%

9
2

%

9
4

%

9
6

%

9
8

%

1
0
0

%

A
c
cu

ra
c
y
 o

f
th

e
 c

la
s
si

fi
e

r

Percentage of rules

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0
%

2
%

4
%

6
%

8
%

1
0
%

1
2
%

1
4
%

1
6
%

1
8
%

2
0
%

2
2
%

2
4
%

2
6
%

2
8
%

3
0
%

3
2
%

3
4
%

3
6
%

3
8
%

4
0
%

4
2
%

4
4
%

4
6
%

4
8
%

5
0
%

5
2
%

5
4
%

5
6
%

5
8
%

6
0
%

6
2
%

6
4
%

6
6
%

6
8
%

7
0
%

7
2
%

7
4
%

7
6
%

7
8
%

8
0
%

8
2
%

8
4
%

8
6
%

8
8
%

9
0
%

9
2
%

9
4
%

9
6
%

9
8
%

1
0

0
%

A
cc

u
ra

c
y
 o

f
th

e
 c

la
ss

if
ie

r

Percentage of rules

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0
%

2
%

4
%

6
%

8
%

1
0

%

1
2

%

1
4

%

1
6

%

1
8

%

2
0

%

2
2

%

2
4

%

2
6

%

2
8

%

3
0

%

3
2

%

3
4

%

3
6

%

3
8

%

4
0

%

4
2

%

4
4

%

4
6

%

4
8

%

5
0

%

5
2

%

5
4

%

5
6

%

5
8

%

6
0

%

6
2

%

6
4

%

6
6

%

6
8

%

7
0

%

7
2

%

7
4

%

7
6

%

7
8

%

8
0

%

8
2

%

8
4

%

8
6

%

8
8

%

9
0

%

9
2

%

9
4

%

9
6

%

9
8

%

1
0
0

%

A
cc

u
ra

cy
 o

f
th

e
 c

la
s
si

fi
e
r

Percentage of rules

CoV of last 10 values below 2%

ProgramsTypes

Methods Fields

Expressions Statements

Figure 6.4: Classifier accuracy (y-axis) obtained with a percentage of rules (x-axis) with the
highest confidence, coverage, precision and recall. For confidence, the CoV of the last 10 values
below 2% is shown.

approximates the elbow value in all the coverage curves, representing a good
trade-off between syntax pattern pruning and classifier accuracy.

Table 6.3 details the results of pattern selection. Out of 45,569 rules (syntax
patterns), we select 3,027 (6.6%). Moreover, the average accuracy of the model
is reduced in just 12.4% (from 10.6% in fields to 16.2% in programs).

6.4.4 Heterogeneous AST classification

Section 6.3.4 describes how heterogeneous datasets are created by combining the
homogeneous datasets with the syntax patterns selected in the previous experi-
ment. Now, we evaluate the performance of the heterogeneous DT models. For
that purpose, we divide all the datasets into 80% of the instances for training and
20% for testing, using a stratified random sampling method [102]. We repeat the

58

6.4. Heterogeneous AST classification

Original rules Rules selected Rule reduction Accuracy loss

Expressions 10,562 422 96,0% 11,1%
Statements 28,163 1,971 93,0% 11,6%
Methods 4,806 384 92,0% 12,3%
Fields 336 27 92,0% 10,6%
Types 1,702 221 87,0% 13,5%
Programs 21 7 65,0% 16,2%

Total 45,590 3,034 93.3% 12.4%

Table 6.3: Results of pattern selection.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Expressions Statements Methods

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fields Types Programs

DT KNN LG MLP NB SVM Abu-Naser Lee et al.

Heterogeneous modelsHomogeneous models

A
c
c
u
ra
c
y

A
c
c
u
ra
c
y

Figure 6.5: Accuracy of all the classifiers (whiskers represent 95% confidence intervals).

training plus testing process 30 times, measuring the mean, standard deviation
and 95% confidence intervals of accuracy, F1 and AUC values [102]. Data split
was random and stratified to ensure that the proportions between classes are the
same in each fold, as they are in the whole dataset (50% / 50%).

In Figure 6.5, we can see the accuracy of the heterogeneous DT models. When
a whole program is classified, the average accuracy of DTs is 99.6%. This per-
formance is reduced when we classify smaller AST structures: 99.5% for types,
95.2% for methods, 91.4% for fields, 88.3% for statements, and 78.1% for expres-
sions. Variability (confidence intervals) of the results is low (Table 6.4), because
models were created with an important amount of data (more than 12 million
instances in total; see Table 6.2). 95% confidence intervals for all the models are
lower than 0.04% (Table 6.4).

Figure 6.5 compares our system with the two related works to classify the
expertise level of programmers, discussed in Section 2.3. The research work un-

59

6.4. Heterogeneous AST classification

dertaken by Abu-Naser and Lee et al. classifies programmers with 92% and 97%
accuracy, respectively. Our system provides 99.6% average accuracy with 0.02%
error, so there seems to be a significant benefit1. Moreover, our system predicts
the expertise level of programmers by just analyzing their code; it does not need
to interact or observe them while they are coding.

DT KNN LG MLP NB SVM

A
cc

u
ra

cy

Statements 0.883 ± 0.04% 0.866 ± 0.04% 0.765 ± 0.03% 0.864 ± 0.03% 0.605 ± 0.06% 0.869 ± 0.04%
Methods 0.952 ± 0.03% 0.927 ± 0.03% 0.837 ± 0.02% 0.938 ± 0.03% 0.752 ± 0.05% 0.946 ± 0.04%
Fields 0.914 ± 0.03% 0.896 ± 0.03% 0.891 ± 0.04% 0.912 ± 0.04% 0.711 ± 0.06% 0.910 ± 0.04%
Types 0.995 ± 0.02% 0.992 ± 0.02% 0.995 ± 0.02% 0.995 ± 0.01% 0.978 ± 0.04% 0.993 ± 0.02%
Programs 0.996 ± 0.02% 0.992 ± 0.03% 0.996 ± 0.02% 0.996 ± 0.02% 0.980 ± 0.04% 0.996 ± 0.01%

F
1

Statements 0.883 ± 0.03% 0.866 ± 0.04% 0.765 ± 0.03% 0.864 ± 0.03% 0.606 ± 0.05% 0.870 ± 0.04%
Methods 0.952 ± 0.03% 0.927 ± 0.03% 0.837 ± 0.02% 0.938 ± 0.03% 0.753 ± 0.05% 0.947 ± 0.04%
Fields 0.914 ± 0.02% 0.896 ± 0.03% 0.891 ± 0.04% 0.912 ± 0.04% 0.711 ± 0.06% 0.910 ± 0.04%
Types 0.995 ± 0.02% 0.992 ± 0.02% 0.995 ± 0.02% 0.995 ± 0.01% 0.979 ± 0.04% 0.993 ± 0.02%
Programs 0.996 ± 0.02% 0.992 ± 0.03% 0.996 ± 0.02% 0.996 ± 0.02% 0.980 ± 0.04% 0.996 ± 0.01%

A
U

C

Statements 0.883 ± 0.04% 0.866 ± 0.04% 0.765 ± 0.03% 0.864 ± 0.03% 0.605 ± 0.06% 0.869 ± 0.04%
Methods 0.952 ± 0.03% 0.927 ± 0.03% 0.837 ± 0.02% 0.938 ± 0.03% 0.752 ± 0.05% 0.946 ± 0.04%
Fields 0.914 ± 0.03% 0.896 ± 0.03% 0.891 ± 0.04% 0.912 ± 0.04% 0.711 ± 0.06% 0.910 ± 0.04%
Types 0.995 ± 0.02% 0.992 ± 0.02% 0.995 ± 0.02% 0.995 ± 0.01% 0.978 ± 0.04% 0.993 ± 0.02%
Programs 0.996 ± 0.02% 0.992 ± 0.03% 0.996 ± 0.02% 0.996 ± 0.02% 0.980 ± 0.04% 0.996 ± 0.01%

Table 6.4: Performance of all the heterogeneous models (95% confidence intervals are expressed
as percentages). Bold font represents the highest value. If one row has multiple cells in bold
type, it means that there is not significant difference among them (p-value ≥ 0.05, α = 0.05).

DT KNN LG MLP NB SVM

A
cc

u
ra

cy

Expressions 0.781 ± 0.01% 0.766 ± 0.17% 0.714 ± 0.01% 0.762 ± 0.15% 0.534 ± 0.01% 0.773 ± 0.16%
Statements 0.810 ± 0.02% 0.795 ± 0.16% 0.701 ± 0.03% 0.793 ± 0.02% 0.496 ± 0.03% 0.797 ± 0.14%
Methods 0.850 ± 0.04% 0.828 ± 0.06% 0.748 ± 0.06% 0.837 ± 0.05% 0.616 ± 0.06% 0.844 ± 0.05%
Fields 0.834 ± 0.08% 0.818 ± 1.31% 0.814 ± 0.08% 0.833 ± 0.07% 0.629 ± 0.11% 0.651 ± 0.10%
Types 0.962 ± 0.05% 0.954 ± 0.09% 0.916 ± 0.10% 0.951 ± 0.10% 0.798 ± 0.12% 0.962 ± 0.07%
Programs 0.940 ± 1.18% 0.932 ± 1.36% 0.827 ± 2.53% 0.868 ± 5.68% 0.910 ± 1.42% 0.932 ± 1.02%

F
1

Expressions 0.780 ± 0.01% 0.771 ± 0.16% 0.709 ± 0.01% 0.770 ± 0.13% 0.139 ± 0.13% 0.773 ± 0.16%
Statements 0.801 ± 0.02% 0.804 ± 0.15% 0.682 ± 0.03% 0.786 ± 0.03% 0.631 ± 0.02% 0.807 ± 0.13%
Methods 0.843 ± 0.05% 0.842 ± 0.05% 0.732 ± 0.08% 0.829 ± 0.06% 0.431 ± 0.18% 0.831 ± 0.06%
Fields 0.837 ± 0.07% 0.818 ± 1.61% 0.816 ± 0.08% 0.836 ± 0.06% 0.431 ± 0.60% 0.738 ± 0.05%
Types 0.961 ± 0.06% 0.953 ± 0.09% 0.914 ± 0.10% 0.949 ± 0.11% 0.766 ± 0.16% 0.961 ± 0.07%
Programs 0.940 ± 1.17% 0.930 ± 1.42% 0.839 ± 2.16% 0.869 ± 6.45% 0.912 ± 1.39% 0.931 ± 1.02%

A
U

C

Expressions 0.781 ± 0.01% 0.766 ± 0.17% 0.714 ± 0.01% 0.762 ± 0.15% 0.534 ± 0.01% 0.773 ± 0.16%
Statements 0.810 ± 0.02% 0.795 ± 0.16% 0.701 ± 0.03% 0.793 ± 0.02% 0.496 ± 0.03% 0.797 ± 0.14%
Methods 0.850 ± 0.04% 0.828 ± 0.06% 0.748 ± 0.06% 0.837 ± 0.05% 0.616 ± 0.06% 0.844 ± 0.05%
Fields 0.834 ± 0.08% 0.818 ± 1.31% 0.814 ± 0.08% 0.833 ± 0.07% 0.629 ± 0.11% 0.651 ± 0.10%
Types 0.962 ± 0.05% 0.954 ± 0.09% 0.916 ± 0.10% 0.951 ± 0.10% 0.798 ± 0.12% 0.962 ± 0.07%
Programs 0.940 ± 1.18% 0.932 ± 1.35% 0.827 ± 2.52% 0.868 ± 5.72% 0.910 ± 1.40% 0.932 ± 1.03%

Table 6.5: Performance of all the homogeneous models (95% confidence intervals are expressed
as percentages). Bold font represents the highest value. If one row has multiple cells in bold
type, it means that there is not significant difference among them (p-value ≥ 0.05, α = 0.05).

Figure 6.5 also presents the performances of the homogeneous DT models,
comparing them with the heterogeneous ones. The purpose of this compari-
son is to see whether the addition of child subAST patterns actually increases

1The two related works do not provide 95% confidence intervals or data to compute a
statistical hypothesis test. In addition, we could not repeat their experiments because they use
electroencephalographic sensors, an eye-tracker, and a LP-ITS system that is not available for
download.

60

6.4. Heterogeneous syntax pattern extraction

the accuracy of the classifiers. All the heterogeneous DT models improve the
performance of the corresponding homogeneous ones. Accuracies of statements,
methods, fields, types and programs are increased by 9%, 12%, 9.6%, 3.4% and
6%, respectively.

Besides the DT models to classify programmers, we built other classifiers with
distinct techniques, using the same datasets. As mentioned, we selected DTs
because they are interpretable white-box models, which allow us to extract the
syntax patterns of the classifiers in order to implement the feature learning ap-
proach proposed in this chapter. However, we want to see to what extent the
classification accuracy of DTs is similar to other common machine-learning ap-
proaches.

In particular, we built other classifiers using logistic regression, (Gaussian)
näıve Bayes, multilayer perceptron, support vector machines, and k-nearest neigh-
bors. For all these models, we first perform a feature selection process and then
hyper-parameter tuning. Features were selected with the SelectFromModel meta-
transformer that chooses features depending on importance weights. The esti-
mator used to select the features was a random forest classifier with 100 trees.
Hyper-parameter tuning was done the same way as for DTs—the different hyper-
parameter options used can be consulted in [103]. We repeat the training plus
testing process 30 times, computing the 95% confidence intervals. All the algo-
rithms, including feature selection and hyper-parameter tuning, were executed in
parallel using all the cores in our server.

Figure 6.5 and Table 6.5 show the performance of the different classifiers for
the homogeneous datasets. DT is the method with the best average performance.
We performed a statistical hypothesis test (α = 0.05) to compute whether the
performance of each method is significantly different to DT (p-value < 0.05).
For accuracy and AUC measures, DT provides the highest performance (in three
cases, statistical differences with SVM are not significant; see Table 6.5). For F1,
there is one case (statements) where SVM performs better than DT; in the rest
of the scenarios, DT provides the highest F1 measures. For the heterogeneous
models (Table 6.4), DT is the technique with the highest performance for all the
measures (accuracy, F1 and AUC). When classifying types and programs, LG,
MLP and SVM are not significantly different to DT. All these results validate that
DT not only builds interpretable white-box models, but also provides excellent
performance results for the given datasets.

6.4.5 Heterogeneous syntax pattern extraction

The expert and novice syntax patterns found in the heterogeneous models are
a valuable outcome of our research. As mentioned, they could be used in pro-
gramming courses, to improve the hints given by development environments, and
to create Intelligent Tutoring Systems. As described in Section 6.3.5, we tra-
versed the heterogeneous DT models to extract the final syntax patterns used by
expert and novice Java programmers. For example, the following rule classifies
a programmer as expert, using syntax patterns of program, type and method
constructs:

61

6.4. Scoring the expertise level of programmers

if enumeration percentage(program)>0 and interface percentage(program)>1
and ∃ type1 . category(type1)==class and generic types(type1)>0
and ∃ type2 . category(type2)==class and extend classes(type2)>0

and implement interfaces(type2)>1
and ∃ method . number statements(method)<=3

then expertise level = expert

The previous pattern describes programs that contains enumeration and in-
terface (more than 1%) types, implements no less than one generic type, at least
one class extend another class and implements more than one interface, and one
method has three or fewer statements.

Likewise, the following method pattern was extracted to classify beginners:

if not(isOverride(method)) and numberOfAnnotations(method)==0
and numberOfParameters(method)==0 and not(isFinal(method))
and numberOfThrows(method)==0 and numberOfStatements(method)<=2
and visibility(method)==public and numberOfGenericTypes(method)==0
and namingConvention(method)==snake case
and ∃ statement . depth(statement)>=67

then expertise level = beginner

Our system extracted 742, 721, 782, 636 and 575 heterogeneous syntax pat-
terns for, respectively, statements, methods, fields, types and programs. All the
patterns found are available for download at [103].

6.4.6 Scoring the expertise level of programmers

An important discussion regarding the classification method proposed in this
dissertation is about the binary character of classifying programmers as either
experts or beginners. As we know, the classification of programmers by their
expertise level is not binary, since many programmers may be classified as in-
termediate level. Fortunately, since the classifier infers the syntax patterns for
novice and expert programmers, it is possible to measure the probability of being
in one of these groups, and hence to score how close the programmer is to be an
expert or beginner.

Logistic regression is a calibrated probabilistic classifier that provides a score
that can be directly interpreted as a confidence level [104]. We built logistic
regression models from the heterogeneous datasets to compute the probability of
a programmer to be classified as novice or expert. Figure 6.6 shows the percentage
of instances per score, for the two labels (beginner and expert). We can see how
the most common score is a number between 0.9 and 1, because all the instances
in the dataset are code written by either beginners or experts. As expected,
expressions are the syntax patterns with the worst performance (71.4% of the
instances are classified correctly), and programs outperform the rest of syntax

62

6.4. Execution time of the proposed method

Beginner Expert

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

[0 - 0.1) [0.1 - 0.2) [0.2 - 0.3) [0.3 - 0.4) [0.4 - 0.5) [0.5 - 0.6) [0.6 - 0.7) [0.7 - 0.8) [0.8 - 0.9) [0.9 - 1.0]

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

[0 - 0.1) [0.1 - 0.2) [0.2 - 0.3) [0.3 - 0.4) [0.4 - 0.5) [0.5 - 0.6) [0.6 - 0.7) [0.7 - 0.8) [0.8 - 0.9) [0.9 - 1.0]

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

[0 - 0.1) [0.1 - 0.2) [0.2 - 0.3) [0.3 - 0.4) [0.4 - 0.5) [0.5 - 0.6) [0.6 - 0.7) [0.7 - 0.8) [0.8 - 0.9) [0.9 - 1.0]

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

[0 - 0.1) [0.1 - 0.2) [0.2 - 0.3) [0.3 - 0.4) [0.4 - 0.5) [0.5 - 0.6) [0.6 - 0.7) [0.7 - 0.8) [0.8 - 0.9) [0.9 - 1.0]

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

[0 - 0.1) [0.1 - 0.2) [0.2 - 0.3) [0.3 - 0.4) [0.4 - 0.5) [0.5 - 0.6) [0.6 - 0.7) [0.7 - 0.8) [0.8 - 0.9) [0.9 - 1.0]

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

[0 - 0.1) [0.1 - 0.2) [0.2 - 0.3) [0.3 - 0.4) [0.4 - 0.5) [0.5 - 0.6) [0.6 - 0.7) [0.7 - 0.8) [0.8 - 0.9) [0.9 - 1.0]

ProgramsTypes

Fields

Statements

Methods

Expressions
P

e
rc

e
n

ta
g

e
 o

f
in

st
a

n
ce

s
P

e
rc

e
n

ta
g

e
 o

f
in

st
a

n
ce

s
P

e
rc

e
n

ta
g

e
 o

f
in

st
a

n
ce

s

P
e

rc
e

n
ta

g
e

 o
f

in
st

a
n

ce
s

P
e

rc
e

n
ta

g
e

 o
f

in
st

a
n

ce
s

P
e

rc
e

n
ta

g
e

 o
f

in
st

a
n

ce
s

Score

ScoreScore

Score

Score Score

Figure 6.6: Percentage of instances per score, using a probabilistic LG model.

constructs (99.6%). We can also see in Figure 6.6 that the model classifies experts
better than beginners. It seems to be easier to identify the syntax patterns that
expert programmers write, rather than those coded by beginners.

6.4.7 Execution time of the proposed method

Table 6.6 shows the execution times of all the phases of the proposed system.
The system takes as input the Java programs described in Section 6.4.1, and pro-
duces six heterogeneous classifiers plus the final syntax patterns for each syntax
construct.

Programs Types Methods Fields Statements Expressions Total

H
o
m

o
g
en

.

Dataset construction 1.961 46.14 296.4 113.1 1754 6582 8,793.2
Model construction 0.030 0.193 0.064 0.028 0.487 2.375 3.2
Syntax pattern extraction 0.009 1.043 13.24 0.439 312.5 1595 1,921.7
Pattern selection and simplification 0.316 0.410 1.366 0.183 9.219 27.38 38.9

H
et

er
o
g
en

.

Dataset construction 3320 3107 2399 1093 1168 — 11,087.6
Model construction 0.210 0.241 0.209 0.117 0.654 — 1.4
Syntax pattern extraction 0.914 1.164 21.21 0.994 401.1 — 425.4
Pattern selection and simplification 0.449 0.534 2.456 0.436 11.954 — 15.8

Total 3,324 3,156 2,734 1,208 3,658 8,206 22,287.3

Table 6.6: Execution times (seconds) of all the modules in the architecture.

The whole process took 6 hours and 12 minutes (22,287 seconds) to run in

63

6.4. Execution time of the proposed method

the computer described in Section 6.4.2. The two most expensive phases are the
construction of datasets, which take 2.44 and 3.08 hours for the homogeneous
and heterogeneous datasets, respectively.

The generated DT classifiers are able to predict the expertise level of Java pro-
grammers almost instantaneously (average execution time is 4.6 microseconds).
Logistic regression and multilayer perceptron perform similarly (differences are
not statistically significant). Näıve Bayes, SVM and KNN require, respectively,
3.87, 987 and 6079 times more execution time than DT to classify a Java pro-
grammer.

64

Chapter 7

Conclusions

The proposed representation of source code by means of different overlapping
graph structures can be used to build different tools for software development,
such as efficient and scalable program analyses, and source code classifiers. This
proposal is materialized with the implementation of ProgQuery, an infrastruc-
ture that builds those graph representations for Java code, and stores them in a
Neo4j graph database. Syntactic and semantic information can be consulted in
a declarative fashion, and its performance and scalability is higher than related
systems.

We propose an ontology with seven graph structures to represent syntactic
and semantic information of Java programs. This information includes Abstract
Syntax Trees, Control Flow Graphs, Program Dependency Graphs, Call Graphs,
Type Graphs, Class Dependency Graphs and Package Graphs. We represented
different Java programs with these structures, and the information provided is
sufficient to implement advanced well-known static analyses.

The seven representations defined are stored into a Neo4j graph database, so
no impedance mismatch is produced; i.e., graphs are not translated into tables.
One direct benefit is runtime performance, since no model translation is required.
Another advantage is that graph abstractions are not mislaid in the persistence
store, so any language, API or framework for accessing the database provides the
original graph abstractions.

One distinguishing feature of the information stored is that graph represen-
tations are designed to be overlaid. This means that a syntactic node may be
connected with other different semantic representations through semantic rela-
tionships, and vice versa. This makes it easy to express advanced analyses, be-
cause syntactic and semantic information can be combined. It also avoids the
performance cost of connecting different representations when queries are exe-
cuted.

The evaluation presented shows that ProgQuery runs static analyses from 48 to
245 times faster than the related systems. It has also shown better scalability to
increasing program sizes and analysis complexity. ProgQuery is the only system
that runs all the analyses for an 18M lines of code program, and most of the

65

7.0. Execution time of the proposed method

analyses take tens of seconds. In ProgQuery, Cypher queries require from 18%
to 50% the code needed to express the same analyses in other systems.

These performance and expressiveness benefits are partially caused by the
additional semantic information provided by our system (the overlaid represen-
tations are also an important factor). The computation and storage of that
supplementary information involves 60% insertion time increase, but only when
the Neo4j server database is used. Likewise, average database size grows from
25% to 97%. However, these penalties are much lower than the average analysis
time benefits obtained (from 4,816% to 24,551%).

Besides static analysis, ProgQuery has been used to create a predictive model
to classify Java code according to programmer’s expertise. We extract homo-
geneous syntactic constructs and store them in different datasets. Then, a fea-
ture learning mechanism is used, combining homogeneous syntax patterns to
build classifiers for heterogeneous compound tree structures. Classification per-
formance ranges from 78.1% when labeling expressions up to 99.6% when label-
ing programs. The interpretable white-box models obtained provide information
about the syntax patterns used by expert and novice programmers. By using a
probabilistic classifier, it is also possible to score the expertise level of program-
mers regarding the syntax patterns used in their code.

66

Chapter 8

Future Work

This work opens new future lines of research that we plan to work on. What
follows is a brief description of such works.

8.1 Implementation of analyses not provided by

other tools

There is plenty of documentation about common mistakes in Java code that are
not detected by existing static program analysis tools. One example is the set of
analyses described by Joshua Bloch for effective Java programming [63]. Some of
these analyses are checked by tools, but most of them are not. When ProgQuery
was designed, we considered all the items in that book, so that they could be
implemented in our system. Future work is to provide such implementations.

8.2 Automatic insertion of open source code

We plan to use ProgQuery for sharing syntactic and semantic program infor-
mation of existing open-source repositories over the web. ProgQuery will auto-
matically download the source code, compile it, populate a graph database with
syntactic and semantic representations, and provide that information online, as
computable data. Currently, we only support GitHub projects that describe their
compilation process in the Maven build automation tool. Our intention is to ex-
tend this mechanism to other repositories and build automation tools. Then,
ProgQuery could transparently include in its database new open-source projects
added to existing repositories.

8.3 Semantic web contents from open-source repos-

itories

In our current implementation, we use Neo4j and Cypher because of the runtime
performance they provide. However, when program representations are to be

67

8.6. New programming languages and representations

offered as semantic web resources, other standard representations such as RDF
and OWL are commonly used. Therefore, once we implement the automatic code
insertion mechanism described in the previous subsection, standard semantic web
representations for programs could be generated [105]. For example, the ontology
defined in Appendix A could be expressed in RDFS, and all the programs in the
database could be translated into RDF content.

8.4 Predictive models with semantic features

In the second case scenario presented in this dissertation, we build a Java source
code classifier by considering different compound syntactic constructs. Although
that kind of information seems to be sufficient to tell the difference between be-
ginners and expert programmers, other kind of models may take advantage of
semantic information. Some existing works have already used semantic program
information for other purposes such as deobfuscation, advanced code completion,
optimization, traceability and code fixing [106]. However, these works just extract
the semantic information that the researchers think will be valuable to predict
the target. ProgQuery allows extracting combined syntactic and semantic infor-
mation, providing numerous additional features. The generated datasets could be
used to build new predictive models aimed at improving software development.

8.5 Graph structure mining and classification

Traditional machine learning algorithms require instances/individuals to be rep-
resented as n-dimensional vectors. However, program representations are com-
monly modeled as graphs. There exist alternative structured prediction methods
such as Graph Neural Networks (GNNs) and Conditional Random Fields (CRFs),
but they suffer high computation and space costs that are too high to be used
with massive codebases [96]. Moreover, they do not build interpretable white-box
models. Multi-relational (MR) data mining is aimed at obtaining white-box mod-
els (MR association rules, MR decision trees and MR distance-based methods) for
datasets stored in multiple tables [107]. Similarly, graph-based data mining does
the same for graph structures [108]. We plan to work on adapting the existing
research works to achieve mining and classifying massive graph databases, and
use them with the program representations defined in this dissertation.

8.6 New programming languages and represen-

tations

ProgQuery could be extended to support other languages (e.g., Python, C#,
C++ and JavaScript). For compiled languages (C++ and C), we could follow
the same approach as Java, extending an existing compiler. For other languages
with more advanced reflection features (Python and JavaScript), ASTs could be
obtained using meta-programming. The ontology should be extended to represent
particular syntax elements of each language. Although semantic representations

68

8.8. Project information and evolution

were designed to model elements of most imperative object-oriented languages,
it may be necessary to adapt them.

The designed ontology can also be extended with new semantic representa-
tions. First, points-to information could be added. The points-to analysis pro-
vides information about the memory address a pointer expression may be pointing
to [109]. Then, we could include pointer and escape information, as an extension
of the points-to analysis, to offer information about which objects may escape
from one program region [110]. Relying on these new representations, purity and
side-effect information would provide write-effect data about methods and param-
eters [111]. All the representations mentioned provide valuable information for
various analyses regarding object mutability, actual methods invoked (considering
dynamic types of objects), object lifecycle and object aliasing. These representa-
tions would allow the user to create new analyses and improve the completeness
of the existing ones (e.g., OBJ-50, OBJ-56, ERR-54 and MET-52 [18]).

8.7 Automatic error fixing

In the first case scenario presented in this dissertation, we implemented in Prog-
Query 13 analyses taken from [18]. These analyses are Cypher queries that show
warning messages for potential programming errors, not detected by compilers.
Those messages locate the error in the input files, and give information to help
programmers to fix them manually. The next step is to enhance those analyses by
specifying graph transformations to automatically fix the errors. New analyses
would transform ASTs it into other ASTs without errors, in just the same way
existing IDEs suggest fixes for some compiler errors.

In addition to the mentioned deterministic approach to fix programs, a ma-
chine learning approach could be used [112]. Different program versions could
be obtained by including plug-ins in IDEs. With this approach, we can see how
syntax and semantic constructs commonly evolve from erroneous code to a fi-
nal version fixed by the programmer. One example of this approach is the Nate
tool, that learns how to associate ASTs of erroneous expressions to fixed ones [49].
We could extend this approach to different language constructs (not just expres-
sions), and improve its accuracy by using semantic information (not just syntactic
information).

8.8 Project information and evolution

Currently, ProgQuery represents programs as isolated graphs. However, existing
repositories provide additional information about projects (e.g., owner, language,
documentation, contributors and network graphs), including how the code evolves
(e.g., forks, branches, pull requests and releases). We could include in our ontol-
ogy new elements to model all this information. For example, programs starting
with a fork from another project could be modeled with specific edges between
projects. This new information would be useful for advanced code queries based
on program evolution, authorship, documentation, etc. [113].

69

8.8. Project information and evolution

From the big code perspective, this information could be used to create pre-
dictive models, correlate program information, mine code evolution patterns and
predict changes in code. For example, source code is commonly changed to sup-
port new requirements and fix errors. By analyzing how projects have evolved,
new code patterns to make code more maintainable could be discovered. We could
also analyze whether there exists correlation between some project properties (the
use of testing code, existing documentation, the number of developers and how
repositories are used) and, for instance, the number of bugs detected [114].

70

Appendix A

Graph Representations used in
the Design of ProgQuery

In this appendix, we describe the ontology defined to represent syntactic and
semantic information of Java programs. Next section describes the nodes (con-
cepts) used in the seven representations defined in ProgQuery. Then, we detail
the concepts, relationships and properties (attributes) of each representation. For
more information about ProgQuery, please check [115].

A.1 Nodes

Figure A.1 shows the nodes used for the seven graph representations described
in [116]. We use the multi-label capability of Neo4j to assign multiple types
(subtyping polymorphism) to a single node. For example, a METHOD INVOCATION

node is also classified as CALL, EXPRESSION, AST NODE and PQ NODE. All the nodes in
ProgQuery hold the PQ NODE label. Nodes belonging to AST, Control Flow Graph,
Program Dependency Graph, Package Graph and Type Graph are labeled with,
respectively, AST NODE, CFG NODE, PDG NODE, PACKAGE NODE and TYPE NODE. The Call
Graph and Class Dependency Graph representations define no new nodes (only
relationships).

A.2 Abstract Syntax Tree

The syntactic information is represented with the AST. This is the main repre-
sentation in ProgQuery. It provides 67 labels for 56 nodes (Figure A.1), 100 rela-
tionships and 26 properties. They define common syntax elements of an object-
oriented language [67].

A.2.1 Nodes

Leaf nodes in Figure A.1 represent concrete nodes of the AST. When a program
is represented, all the particular nodes in the AST are instances of these concrete

71

Appendix A. Graph Representations used in the Design of ProgQuery

ANNOTATION
COMPILATION_UNIT
ENUM_ELEMENT
IMPORT
TYPE_PARAM

AST_NODE

PQ_NODE

EXPRESSION

ASSIGNMENT

COMPOUND_ASSIGNMENT

BINARY_OPERATION

CONDITIONAL_EXPRESSION

NEW_ARRAY

TYPE_CAST

INSTANCE_OF

LAMBDA_EXPRESSION

LITERAL

MEMBER_REFERENCE

UNARY_OPERATION

CALL

METHOD_INVOCATION

NEW_INSTANCE

LVALUE

ARRAY_ACCESS

IDENTIFIER

MEMBER_SELECTION

DEFINITION

TYPE_DEFINITION

CLASS_DEF

CALLABLE_DEF

INTERFACE_DEF

ENUM_DEF

CONSTRUCTOR_DEF

VARIABLE_DEF

METHOD_DEF

ATTR_DEF

LOCAL_DEF

PARAMETER_DEF

AST_TYPE

ANNOTATED_TYPE

STATEMENT

ASSERT_STATEMENT

BLOCK

FINALLY_BLOCK

BREAK_STATEMENT

CASE_STATEMENT

CATCH_BLOCK

CONTINUE_STATEMENT

DO_WHILE_LOOP

EMPTY_STATEMENT

FOREACH_LOOP

FOR_LOOP

IF_STATEMENT

LABELED_STATEMENT

RETURN_STATEMENT

SWITCH_STATEMENT

EXPRESSION_STATEMENT

SYNCHRONIZED_BLOCK

THROW_STATEMENT

TRY_STATEMENT

WHILE_LOOP

CFG_NODE

CFG_NORMAL_END
CFG_ENTRY

CFG_EXCEPTIONAL_END

CFG_LAST_STATEMENT_IN_FINALLY

TYPE_NODE

NULL_TYPE

CALLABLE_TYPE

TYPE_VARIABLE

VOID_TYPE

PACKAGE_TYPE

PRIMITIVE_TYPE

INTERSECTION_TYPE

UNION_TYPE

GENERIC_TYPE

WILDCARD_TYPE

PDG_NODE

THIS_REF
INITIALIZATION

PACKAGE_NODE

PACKAGE
PROGRAM

LOCAL_VAR_DEF

ARRAY_TYPE

Figure A.1: Labels defined to categorize the nodes used for the different Java program repre-
sentations.

labels. The rest of labels in Figure A.1 are used to generalize/classify nodes.
These are the labels defined to represent ASTs:

– ANNOTATION: concrete node type that represents any Java annotation.

– COMPILATION UNIT: Java files, which are the root nodes in ASTs (see [116]).

– ENUM ELEMENT: elements included in an enum definition.

– IMPORT: import clauses used in the Java source code.

– TYPE PARAM: type parameters used when a generic type, method or construc-
tor is defined.

– EXPRESSION: this label is a generalization of all entities representing expres-
sions in the AST. These are the expressions defined:

– ASSIGNMENT: non-compound assignment expressions.

– COMPOUND ASSIGNMENT: Java compound assignment expressions (e.g., +=,
*=, &= and >>=).

– BINARY OPERATION: binary arithmetic, logical, bitwise and relational
expressions.

– CONDITIONAL EXPRESSION: ternary conditional expression(expr1 ? expr2

: expr3).

– NEW ARRAY: array creation expression.

– TYPE CAST: cast expression (explicit type conversion).

– INSTANCE OF: expressions created with the instanceof operator.

72

Appendix A. Graph Representations used in the Design of ProgQuery

– LAMBDA EXPRESSION: represents lambda expressions, including its pa-
rameters and body.

– LITERAL: Java literals for built-in types, String and null.

– MEMBER REFERENCE: method reference expression created with the ::

operator.

– UNARY OPERATION: unary arithmetic, logical, increment, decrement and
bitwise expressions.

– CALL: generalization of method invocation and object creation expres-
sions:

* METHOD INVOCATION: method invocation expressions.

* NEW INSTANCE: object creation by calling the constructor via new.

– LVALUE: generalization of lvalue expressions; i.e., those Java expressions
that could be placed as left-hand side of assignments:

* ARRAY ACCESS: array indexing expression, used to get one element
collected by an array through the [] operator.

* IDENTIFIER: variable, method and type expressions; this node also
has the AST TYPE label (see Figure A.1).

* MEMBER SELECTION: represents expressions created with the . oper-
ator: field (obj.field) access, method selection in method invoca-
tion (obj.m in obj.m()), full name qualifiers (java.util.List) and
nested type access (new OuterClass.InnerClass()). This node
also has the AST TYPE label (see Figure A.1).

– DEFINITION: generalization of all the elements that can be defined, i.e. types
(classes, interfaces and enumerations), methods, constructors and variables
(attributes, parameters and local variables):

– TYPE DEFINITION: generalization to group class, enumeration and in-
terface definitions:

* CLASS DEF: class definition.

* INTERFACE DEF: interface definition.

* ENUM DEF: definition of an enumeration.

– CALLABLE DEF: generalization of method and constructor definitions:

* CONSTRUCTOR DEF: constructor definition.

* METHOD DEF: method definition.

– VARIABLE DEF: generalization of field, parameter and local variable def-
initions:

* ATTR DEF: attribute (field) definition.

* LOCAL DEF: generalization of variables defined in a local scope:

73

Appendix A. Graph Representations used in the Design of ProgQuery

· PARAMETER DEF: definition of a function formal parameter.

· LOCAL VAR DEF: local variable definition; this node also has the
STATEMENT label (see Figure A.1).

– AST TYPE: generalization of types that could be written in the source code
(and hence belong to the AST):

– ANNOTATED TYPE: type that has been added one or more annotations.

– ARRAY TYPE: represents an array type .

– PRIMITIVE TYPE: primitive/built-in Java type.

– INTERSECTION TYPE: intersection type created with the & type construc-
tor.

– UNION TYPE: union type created with the | type constructor, used to
catch exceptions of different types.

– GENERIC TYPE: an instantiated generic type; i.e, Type<typelist>.

– WILDCARD TYPE: Java wildcard type created with ? as a special type
parameter.

– STATEMENT

– ASSERT STATEMENT: Java assert statements.

– BLOCK: a block is a sequence of statements between { and }.

– FINALLY BLOCK: the finally clause, including the statements in the
block.

– BREAK STATEMENT: Java break statement, which might include a label.

– CASE STATEMENT: case labels in a switch statement.

– CATCH BLOCK: the catch clause, including the statements in the block.

– CONTINUE STATEMENT: continue statement, which might include a label.

– DO WHILE LOOP: includes the condition and the block.

– EMPTY STATEMENT: when the programmer writes a single ; as a state-
ment.

– FOREACH LOOP: enhanced for loop with for-each semantics.

– FOR LOOP: classical for loop.

– IF STATEMENT: includes the condition and the if and else blocks.

– LABELED STATEMENT: Java labeled statements.

– RETURN STATEMENT: has an optional expression to be returned.

– SWITCH STATEMENT: it holds the condition expression and a sequence of
case statements.

74

Appendix A. Graph Representations used in the Design of ProgQuery

– EXPRESSION STATEMENT: an expression converted into a statement; they
may be simple or compound assignments, unary increments and decre-
ments, and calls.

– SYNCHRONIZED BLOCK: it holds the expression representing the monitor
and the code/block with mutual exclusion.

– THROW STATEMENT: encloses the expression to be thrown.

– TRY STATEMENT: collects the try, catch and finally blocks.

– WHILE LOOP: holds the condition expression and the loop body.

A.2.2 Relationships

These are the relationships defined for the AST (their domain, range and cardi-
nality are defined in Tables A.1 and A.2):

– ARRAYACCESS EXPR: relates an array access to its first child, an expression
whose type is array.

– ARRAYACCESS INDEX: relates an array access to its index expression.

– ASSIGNMENT LHS: relates an assignment to its left-hand side.

– ASSIGNMENT RHS: relates an assignment to its right-hand side.

– BINOP LHS: relates a binary operation to its left-hand side.

– BINOP RHS: relates a (non logical) binary operation to its right-hand side.

– BINOP COND RHS: relates a logical binary operation to its right-hand side
(which may not be computed).

– CAST ENCLOSES: relates a type cast to the enclosed expression.

– CAST TYPE: relates a type cast to the type of the coerced expression.

– COMPOUND ASSIGNMENT LHS: relates a compound assignment to its left-hand
side.

– COMPOUND ASSIGNMENT RHS: relates a compound assignment to its right-hand
side.

– CONDITIONAL EXPR CONDITION: relates a conditional expression (ternary op-
erator) to its condition.

– CONDITIONAL EXPR THEN: relates a conditional (ternary) expression to the
expression evaluated if the condition holds.

– CONDITIONAL EXPR ELSE: relates a conditional (ternary) expression to the
expression evaluated if the condition does not hold.

– INSTANCE OF EXPRESSION: relates an instanceof expression to its child ex-
pression.

75

Appendix A. Graph Representations used in the Design of ProgQuery

– INSTANCE OF TYPE: relates an instanceof expression to its child node repre-
senting the type.

– LAMBDA EXPRESSION BODY: relates a lambda expression to its body.

– LAMBDA EXPRESSION PARAMETERS: relates a lambda expression to its parame-
ters, if any.

– MEMBER REFERENCE EXPRESSION: relates a member reference to the first operand
(expression).

– MEMBER REFERENCE TYPE ARGUMENTS: relates a member reference to its type
arguments, if any.

– MEMBER SELECT EXPR: relates a member selection to the first operand (ex-
pression).

– METHODINVOCATION ARGUMENTS: relates a method invocation to its arguments,
if any.

– METHODINVOCATION METHOD SELECT: in obj.method(args), relates such method
invocation to obj.method.

– METHODINVOCATION TYPE ARGUMENTS: relates a method invocation to its type
arguments, if any.

– NEW CLASS ARGUMENTS: relates a new instance expression to its arguments, if
any.

– NEW CLASS BODY: relates a new instance expression to the class body defined
when an anonymous class is being instantiated, if so.

– NEW CLASS TYPE ARGUMENTS: relates a new instance expression to its type ar-
guments, if any.

– NEW ARRAY DIMENSION: relates a new array expression to its declared dimen-
sions, if any.

– NEW ARRAY INIT: relates a new array expression to its initializer expressions
(i.e., between { and }) when an explicit initialization is included.

– NEW ARRAY TYPE: relates a new array expression to its declared type.

– NEWCLASS ENCLOSING EXPRESSION: relates a new class expression to its en-
closing expression (i.e., for nested inner classes, expression is the enclosing
expression of expression.new Class(args)).

– UNARY ENCLOSES: relates a unary operation to its child expression.

– NEWCLASS IDENTIFIER: relates a new class expression to its class identifier
referencing the type to be instantiated.

– ASSERT CONDITION: relates an assert statement to its condition.

– ASSERT DETAIL: relates an assert statement to its message.

– CATCH ENCLOSES BLOCK: relates a catch statement to its block.

76

Appendix A. Graph Representations used in the Design of ProgQuery

– CATCH PARAM: relates a catch statement to its parameter.

– WHILE CONDITION: relates a while statement to its condition.

– DO WHILE CONDITION: relates a do-while statement to its condition.

– FOREACH EXPR: relates a for-each statement to its iteration expression.

– FOREACH STATEMENT: relates a for-each statement to its enclosed statement
or block.

– FOREACH VAR: relates a for-each statement to its iteration variable.

– FORLOOP CONDITION: relates a for statement to its condition.

– FORLOOP INIT: relates a for statement to its initialization statements, if any.

– FORLOOP STATEMENT: relates a for statement to its enclosed statement or
block.

– FORLOOP UPDATE: relates a for statement to its update statements, if any.

– CASE EXPR: relates a case statement to its expression.

– CASE STATEMENTS: relates a case statement to its statements, if any.

– IF CONDITION: relates an if statement to its condition.

– IF ELSE: relates an if statement to its else part, if any.

– IF THEN: relates an if statement to its then part.

– SWITCH ENCLOSES CASE: relates a switch statement to its cases, if any.

– SWITCH EXPR: relates a switch statement to its comparison expression.

– SYNCHRONIZED ENCLOSES BLOCK: relates a synchronized statement to its en-
closed block.

– SYNCHRONIZED EXPR: relates a synchronized statement to its expression.

– THROW EXPR: relates a throw statement to the expression to be thrown.

– TRY BLOCK: relates a try statement to its try block.

– TRY CATCH: relates a try statement to its catch statements, if any.

– TRY FINALLY: relates a try statement to its finally block, if any.

– TRY RESOURCES: relates a try statement to its java.lang.AutoCloseable re-
sources, if any.

– LABELED STMT ENCLOSES: relates a labeled statement to its statement.

– RETURN EXPR: relates a return statement to the returned expression.

– ENCLOSES: relates a block to the statements it contains, if any.

– ENCLOSES EXPR: when an expression is represented as a statement, this rela-
tionship connects the statement to the expression.

77

Appendix A. Graph Representations used in the Design of ProgQuery

– WHILE STATEMENT: relates a while loop to the enclosed statement or block.

– DO WHILE STATEMENT: relates a do-while loop to the enclosed statement or
block.

– IMPORTS: relates a compilation unit to its imports, if any.

– HAS TYPE DEF: relates a compilation unit to each type definition included, if
any.

– HAS ANNOTATIONS: relates a definition (type, callable or variable) or anno-
tated type to its annotations, if any.

– HAS ANNOTATIONS ARGUMENTS: relates an annotation to its arguments, if any.

– HAS ANNOTATION TYPE: relates an annotation to its annotation type.

– HAS EXTENDS CLAUSE: relates a class or interface definition to the extended
types (in the extends clause).

– HAS IMPLEMENTS CLAUSE: relates a class or enum definition to its implements

clauses, if any.

– HAS CLASS TYPEPARAMETERS: relates a type definition to its declared type pa-
rameters, if any.

– DECLARES FIELD: relates a type definition to its declared fields, if any.

– DECLARES METHOD: relates a type definition to its declared methods, if any.

– DECLARES CONSTRUCTOR: relates a class or enum definition to its declared
constructors, if any.

– HAS ENUM ELEMENT: relates an enum definition to its declared elements, if any.

– UNDERLYING TYPE: relates an annotated type to the underlying type being
annotated.

– HAS DEFAULT VALUE: relates a method definition to its default value, if any.

– CALLABLE HAS BODY: relates a callable definition to its declared body, if any.

– CALLABLE HAS PARAMETER: relates a callable definition to its declared param-
eters, if any.

– CALLABLE RETURN TYPE: relates a callable definition to its declared return
type.

– CALLABLE HAS THROWS: relates a callable definition to its throws clauses.

– CALLABLE HAS TYPEPARAMETERS: relates a callable definition to its declared
type parameters, if any.

– HAS RECEIVER PARAMETER: relates a callable definition to its receiver param-
eter, if any.

– HAS STATIC INIT: relates a class or enum definition to its static initializer,
if any.

78

Appendix A. Graph Representations used in the Design of ProgQuery

– HAS VARIABLEDECL INIT: relates a variable definition to its initialization, if
any.

– HAS VARIABLEDECL TYPE: relates a variable definition to its declared type.

– INITIALIZATION EXPR: relates an initialization to the initializer expression.

– INTERSECTION COMPOSED OF: relates an intersection type to the types com-
prising the intersection type.

– PARAMETERIZED TYPE: relates a generic type to the type to parameterize.

– GENERIC TYPE ARGUMENT: relates a generic type to its type arguments.

– TYPEPARAMETER EXTENDS: relates a type parameter to its extends bounds, if
any.

– UNION TYPE ALTERNATIVE: relates a union type to its types comprising the
union type.

– WILCARD BOUND: relates a wildcard type to its type bound.

ProgQuery also implements the following user-defined functions:

– database.procedures.getEnclosingClass: relates a statement or variable
definition to its enclosing class. Domain: STATEMENT ∪ VARIABLE DEF, range:
TYPE DEFINITION, cardinality: 1.

– database.procedures.getEnclosingMethod: relates a statement or param-
eter to the method or constructor in which they are enclosed. Domain:
STATEMENT ∪ PARAMETER DEF, range: CALLABLE DEF, cardinality: 1.

– database.procedures.getEnclMethodFromExpr: relates expressions to the
method or constructor containing the statement in which they are enclosed.
Domain:EXPRESSION, range: CALLABLE DEF, cardinality: 0..1.

– database.procedures.getEnclosingStmt: relates expressions to the state-
ment in which they are enclosed; attribute initialization expressions are re-
lated to their attribute definition. Domain: EXPRESSION, range: STATEMENT

∪ ATTR DEF, cardinality: 1.

A.2.3 Properties

The following properties were defined (detailed in Table A.3):

– lineNumber: the line number of this node of the AST.

– column: column number of this node of the AST.

– position: position of this node in the AST nodes list.

– isDeclared: holds whether a specific AST element (or package) is declared
in the project.

– isAbstract: holds if a class, interface or method is declared as abstract.

– isNative: holds if method is declared as native.

79

Appendix A. Graph Representations used in the Design of ProgQuery

Relationship Domain Range Cardinality

ARRAYACCESS EXPR ARRAY ACCESS EXPRESSION 1

ARRAYACCESS INDEX ARRAY ACCESS EXPRESSION 1

ASSIGNMENT LHS ASSIGNMENT LVALUE 1

ASSIGNMENT RHS ASSIGNMENT EXPRESSION 1

BINOP LHS BINARY OPERATION EXPRESSION 1

BINOP RHS BINARY OPERATION EXPRESSION 0..1

BINOP COND RHS BINARY OPERATION EXPRESSION 0..1

CAST ENCLOSES TYPE CAST EXPRESSION 1

CAST TYPE TYPE CAST AST TYPE 1

COMPOUND ASSIGNMENT LHS COMPOUND ASSIGNMENT LVALUE 1

COMPOUND ASSIGNMENT RHS COMPOUND ASSIGNMENT EXPRESSION 1

CONDITIONAL EXPR CONDITION CONDITIONAL EXPRESSION EXPRESSION 1

CONDITIONAL EXPR THEN CONDITIONAL EXPRESSION EXPRESSION 1

CONDITIONAL EXPR ELSE CONDITIONAL EXPRESSION EXPRESSION 1

INSTANCE OF EXPRESSION INSTANCE OF EXPRESSION 1

INSTANCE OF TYPE INSTANCE OF AST TYPE − PRIMITIVE TYPE 1

LAMBDA EXPRESSION BODY LAMBDA EXPRESSION EXPRESSION ∪ BLOCK 1

LAMBDA EXPRESSION PARAMETERS LAMBDA EXPRESSION PARAMETER DEF 0..*

MEMBER REFERENCE EXPRESSION MEMBER REFERENCE EXPRESSION 1

MEMBER REFERENCE TYPE ARGUMENTS MEMBER REFERENCE AST TYPE 0..*

MEMBER SELECT EXPR MEMBER SELECTION EXPRESSION 1

METHODINVOCATION ARGUMENTS METHOD INVOCATION EXPRESSION 0..*

METHODINVOCATION METHOD SELECT METHOD INVOCATION EXPRESSION 1

METHODINVOCATION TYPE ARGUMENTS METHOD INVOCATION AST TYPE 0..*

NEW CLASS ARGUMENTS NEW INSTANCE EXPRESSION 0..*

NEW CLASS BODY NEW INSTANCE CLASS DEF 0..1

NEW CLASS TYPE ARGUMENTS NEW INSTANCE AST TYPE 0..*

NEW ARRAY DIMENSION NEW ARRAY EXPRESSION 0..*

NEW ARRAY INIT NEW ARRAY EXPRESSION 0..*

NEW ARRAY TYPE NEW ARRAY AST TYPE 1

NEWCLASS ENCLOSING EXPRESSION NEW CLASS EXPRESSION 0..1

NEWCLASS IDENTIFIER NEW CLASS
IDENTIFIER ∪ MEMBER SELECTION ∪
ANNOTATED TYPE ∪ GENERIC TYPE 1

UNARY ENCLOSES UNARY OPERATION EXPRESSION 1

ASSERT CONDITION ASSERT STATEMENT EXPRESSION 1

ASSERT DETAIL ASSERT STATEMENT EXPRESSION 0..1

CATCH ENCLOSES BLOCK CATCH BLOCK BLOCK 1

CATCH PARAM CATCH BLOCK LOCAL VAR DEF 1

WHILE CONDITION WHILE LOOP EXPRESSION 1

DO WHILE CONDITION DO WHILE LOOP EXPRESSION 1

FOREACH EXPR FOREACH LOOP EXPRESSION 1

FOREACH STATEMENT FOREACH LOOP STATEMENT 1

FOREACH VAR FOREACH LOOP LOCAL VAR DEF 1

FORLOOP CONDITION FOR LOOP EXPRESSION 0..1

FORLOOP INIT FOR LOOP EXPRESSION STATEMENT ∪ LOCAL VAR DEF 0..*

FORLOOP STATEMENT FOR LOOP STATEMENT 1

FORLOOP UPDATE FOR LOOP EXPRESSION STATEMENT 0..*

CASE EXPR CASE STATEMENT

LITERAL ∪ IDENTIFIER ∪ MEMBER SELECTION

∪ BINARY OPERATION ∪
CONDITIONAL EXPRESSION ∪ TYPE CAST

0..1

CASE STATEMENTS CASE STATEMENT STATEMENT 0..*

IF CONDITION IF STATEMENT EXPRESSION 1

IF ELSE IF STATEMENT STATEMENT 0..1

IF THEN IF STATEMENT STATEMENT 1

Table A.1: Relationships defined for ASTs (part 1).

80

Appendix A. Graph Representations used in the Design of ProgQuery

Relationship Domain Range Cardinality

SWITCH ENCLOSES CASE SWITCH STATEMENT CASE STATEMENT 0..*

SWITCH EXPR SWITCH STATEMENT EXPRESSION 1

SYNCHRONIZED BLOCK SYNCHRONIZED STATEMENT BLOCK 1

SYNCHRONIZED EXPR SYNCHRONIZED STATEMENT EXPRESSION 1

THROW EXPR THROW STATEMENT EXPRESSION 1

TRY BLOCK TRY STATEMENT BLOCK 1

TRY CATCH TRY STATEMENT CATCH BLOCK 0..*

TRY FINALLY TRY STATEMENT FINALLY BLOCK 0..1

TRY RESOURCES TRY STATEMENT LOCAL VAR DEF 0..*

LABELED STMT ENCLOSES LABELED STATEMENT STATEMENT 1

RETURN EXPR RETURN STATEMENT EXPRESSION 0..1

ENCLOSES BLOCK STATEMENT 0..*

ENCLOSES EXPR EXPRESSION STATEMENT EXPRESSION 1

WHILE STATEMENT WHILE LOOP STATEMENT 1

DO WHILE STATEMENT DO WHILE LOOP STATEMENT 1

IMPORTS COMPILATION UNIT IMPORT 0..*

HAS TYPE DEF COMPILATION UNIT TYPE DEFINITION 0..*

HAS ANNOTATIONS
DEFINITION ∪ TYPE PARAM ∪

ANNOTATED TYPE ANNOTATION 0..*

HAS ANNOTATIONS ARGUMENTS ANNOTATION

LITERAL ∪ IDENTIFIER ∪ MEMBER SELECTION

∪ BINARY OPERATION ∪
CONDITIONAL EXPRESSION ∪ TYPE CAST

0..*

HAS ANNOTATION TYPE ANNOTATION IDENTIFIER ∪ MEMBER SELECTION 1

HAS EXTENDS CLAUSE CLASS DEF ∪ INTERFACE DEF
IDENTIFIER ∪ MEMBER SELECTION ∪

GENERIC TYPE 0..*

HAS IMPLEMENTS CLAUSE CLASS DEF ∪ ENUM DEF
IDENTIFIER ∪ MEMBER SELECTION ∪

GENERIC TYPE 0..*

HAS CLASS TYPEPARAMETERS TYPE DEFINITION AST TYPE 0..*

DECLARES FIELD TYPE DEFINITION ATTR DEF 0..*

DECLARES METHOD TYPE DEFINITION METHOD DEF 0..*

DECLARES CONSTRUCTOR CLASS DEF ∪ ENUM DEF CONSTRUCTOR DEF 0..*

HAS ENUM ELEMENT ENUM DEF ENUM ELEMENT 0..*

UNDERLYING TYPE ANNOTATED TYPE AST TYPE 1

HAS DEFAULT VALUE METHOD DEF

LITERAL ∪ IDENTIFIER ∪ MEMBER SELECTION

∪ BINARY OPERATION ∪
CONDITIONAL EXPRESSION ∪ TYPE CAST

0..1

CALLABLE HAS BODY CALLABLE DEF BLOCK 0..1

CALLABLE HAS PARAMETER CALLABLE DEF PARAMETER DEF 0..*

CALLABLE RETURN TYPE CALLABLE DEF AST TYPE 1

CALLABLE HAS THROWS CALLABLE DEF IDENTIFIER ∪ MEMBER SELECTION 0..*

CALLABLE HAS TYPEPARAMETERS CALLABLE DEF AST TYPE 0..*

HAS RECEIVER PARAMETER CALLABLE DEF PARAMETER DEF 0..1

HAS STATIC INIT CLASS DEF ∪ ENUM DEF BLOCK 0..1

HAS VARIABLEDECL INIT VARIABLE DEF INITIALIZATION 0..1

HAS VARIABLEDECL TYPE VARIABLE DEF AST TYPE 1

INITIALIZATION EXPR INITIALIZATION EXPRESSION 1

INTERSECTION COMPOSED OF INTERSECTION TYPE AST TYPE 2..*

PARAMETERIZED TYPE GENERIC TYPE
IDENTIFIER ∪ MEMBER SELECTION ∪

ANNOTATED TYPE 1

GENERIC TYPE ARGUMENT GENERIC TYPE
AST TYPE − {PRIMITIVE TYPE,

INTERSECTION TYPE, UNION TYPE} 0..*

TYPEPARAMETER EXTENDS TYPE PARAM

AST TYPE − {PRIMITIVE TYPE, ARRAY TYPE,
WILDCARD TYPE, UNION TYPE,

INTERSECTION TYPE}
0..*

UNION TYPE ALTERNATIVE UNION TYPE
IDENTIFIER ∪ MEMBER SELECTION ∪

ANNOTATED TYPE 2..*

WILCARD BOUND WILDCARD TYPE

AST TYPE − {PRIMITIVE TYPE,
INTERSECTION TYPE, UNION TYPE,

WILDCARD TYPE}
0..1

Table A.2: Relatioships defined for ASTs (part 2).

81

Appendix A. Graph Representations used in the Design of ProgQuery

– isStatic: holds if an AST element is declared as static.

– isFinal: holds if an AST element is declared as final.

– isStrictfp: holds if a method is declared as strictfp.

– isSynchronized: holds if a method is declared as synchronized.

– isTransient: holds if a field is declared as transient.

– isVolatile: holds if a field is declared as volatile.

– accessLevel: represents the access level of a type, callable or attribute
definition.

– name: string holding the name for identifier, variable and method definition,
type parameter and package nodes.

– memberName: string holding the name of the accessed member.

– completeName: for a given method/constructor, a string with the format
java.lang.Object:equals.

– fullyQualifiedName: for a given method/constructor, a string with the
format java.lang.Object:equals(java.lang.Object).

– simpleName: string holding the simple name of types.

– packageName: string holding the package name of each compilation unit.

– fileName: string holding the path and file name of each compilation unit.

– qualifiedIdentifier: string representing the package or class to be im-
ported.

– typetag: string representing the type of literal.

– label: string holding the name of the label associated to a break or continue
statement.

– operator: operator of common expressions, represented as a string.

– argumentIndex: integer value representing the index of an argument among
all the arguments in the given method.

– paramIndex: Integer value representing the index of a parameter among all
the parameters in the given method.

A.3 Control Flow Graph

A.3.1 Nodes

These are the nodes of the CFG:

– CFG NORMAL END: endpoint of the control flow that represents the normal
completion of the method/constructor execution.

82

Appendix A. Graph Representations used in the Design of ProgQuery

Property Type Domain Value-Type Cardinality

lineNumber Node AST NODE Integer[1, Inf) 1

column Node AST NODE Integer[1, Inf) 1

position Node AST NODE Integer[1, Inf) 1

isDeclared Node
PACKAGE ∪ TYPE DEFINITION ∪ CALLABLE DEF ∪

ATTR DEF Boolean 1

isAbstract Node CLASS DEF ∪ INTERFACE DEF ∪ METHOD DEF Boolean 1

isNative Node METHOD DEF Boolean 1

isStatic Node
METHOD DEF ∪ TYPE DEFINITION ∪ BLOCK ∪ IMPORT

∪ ATTR DEF Boolean 1

isFinal Node METHOD DEF ∪ TYPE DEFINITION ∪ VARIABLE DEF Boolean 1

isStrictfp Node METHOD DEF Boolean 1

isSynchronized Node METHOD DEF Boolean 1

isTransient Node ATTR DEF Boolean 1

isVolatile Node ATTR DEF Boolean 1

accessLevel Node TYPE DEFINITION ∪ CALLABLE DEF ∪ ATTR DEF
{ public, protected, package,

private} 1

name Node

CALLABLE DEF ∪ IDENTIFIER ∪ TYPE PARAM ∪
VARIABLE DEF ∪ LABELED STATEMENT ∪

MEMBER REFERENCE ∪ PACKAGE
String 1

memberName Node MEMBER SELECTION String 1

completeName Node CALLABLE DEF String 1

fullyQualifiedName Node
TYPE DEFINITION ∪ ARRAY TYPE ∪ CALLABLE TYPE ∪

PRIMITIVE TYPE ∪ UNION TYPE ∪ CALLABLE DEF String 1

simpleName Node
TYPE DEFINITION ∪ ARRAY TYPE ∪ CALLABLE TYPE ∪

PRIMITIVE TYPE ∪ UNION TYPE String 1

packageName Node COMPILATION UNIT String 1

fileName Node COMPILATION UNIT String 1

qualifiedIdentifierNode IMPORT String 1

typetag Node LITERAL

{INT LITERAL, FLOAT LITERAL,
STRING LITERAL, NULL LITERAL,
CHAR LITERAL, DOUBLE LITERAL,

LONG LITERAL}
1

label Node BREAK STATEMENT ∪ CONTINUE STATEMENT String 1

operator Node
BINARY OPERATION ∪ UNARY OPERATION ∪

COMPOUND ASSIGNMENT
{PLUS, MINUS, DIVIDE, EQUAL TO,

PREFIX INCREMENT. . .} 1

argumentIndex Node

METHODINVOCATION ARGUMENTS ∪
METHODINVOCATION TYPE ARGUMENTS ∪

NEW CLASS ARGUMENTS ∪ NEW CLASS TYPE ARGUMENTS

∪ MEMBER REFERENCE TYPE ARGUMENTS ∪
HAS ANNOTATIONS ARGUMENTS ∪

GENERIC TYPE ARGUMENTS

Integer[0, Inf) 1

paramIndex Node

HAS METHODDECL PARAMETERS ∪
LAMBDA EXPRESSION PARAMETERS ∪

HAS CLASS TYPEPARAMETERS ∪
HAS METHODDECL PARAMETERS ∪
HAS METHODDECL TYPEPARAMETERS

Integer[0, Inf) 1

Table A.3: Properties defined for ASTs.

83

Appendix A. Graph Representations used in the Design of ProgQuery

– CFG ENTRY: starting point of the control flow connected to the first statement
of the method/constructor.

– CFG EXCEPTIONAL END: endpoint of the control flow; it represents the abrupt
completion of the method/constructor execution caused by an exception.

– CFG LAST STATEMENT IN FINALLY: artificial statement created to model the
statement just before exiting the finally block.

A.3.2 Relationships

We now describe the relationships of CFG. Table A.4 defines their domain (source
node), range (target node) and cardinality.

– CFG ENTRIES: relates a callable definition to the entry point of its control
flow.

– CFG END OF: connects the endpoint of the control flow to the method/constructor
definition that creates the flow path.

– CFG FINALLY TO LAST STMT: relates a finally block to the artificial statement
representing the flow just before exiting the finally block.

– CFG NEXT STATEMENT: connects one statement to the following one, when no
jump exists.

– CFG NEXT STATEMENT IF TRUE: relates a statement that bifurcates the control
flow to the next one, when the condition holds.

– CFG NEXT STATEMENT IF FALSE: relates a statement that bifurcates the con-
trol flow to the next one, when the condition does not hold.

– CFG FOR EACH HAS NEXT: relates for-each statements to the first statement to
be executed if there is any element to iterate.

– CFG FOR EACH NO MORE ELEMENTS: relates for-each statements to the state-
ment outside the loop to be executed if there are no more elements to
iterate.

– CFG SWITCH CASE IS EQUAL TO: relates a switch statement to the statement
to be executed if a case expression is matched.

– CFG SWITCH DEFAULT CASE: relates a switch statement to the statement to
be executed if no case expression is matched.

– CFG AFTER FINALLY PREVIOUS BREAK: the last statement in a finally block is
connected to the statement to be executed in case the try block contains a
break statement.

– CFG AFTER FINALLY PREVIOUS CONTINUE: the last statement in a finally block
is connected to the statement to be executed in case the try block contains
a continue statement.

– CFG NO EXCEPTION: relates the last statement in a finally block to the state-
ment to be executed if no exceptions are thrown.

84

Appendix A. Graph Representations used in the Design of ProgQuery

– CFG IF THERE IS UNCAUGHT EXCEPTION: relates a catch statement or the last
statement in a finally block to the statement to be executed if a thrown
exception is not caught.

– CFG CAUGHT EXCEPTION: relates a catch statement to its local variable (be-
tween (and)) if, considering the hierarchical type information, the excep-
tion could be caught.

– CFG MAY THROW: relates a statement that may throw an exception to state-
ments to be executed if so.

– CFG THROWS: relates a throw statement to the statement to be executed after
the exception is thrown.

ProgQuery provides the following user-defined functions:

– database.procedures.getAnySucc: relates a statement or control flow node
to its successors, including itself. Domain: CFG NODE ∪ STATEMENT, range:
CFG NODE ∪ STATEMENT, cardinality: 1..*.

– database.procedures.getAnySuccNotItself: relates a statement or control
flow node to its possible successors, not including itself. Domain: CFG NODE

∪ STATEMENT, range: CFG NODE ∪ STATEMENT, cardinality: 0..*.

A.3.3 Properties

These are the properties of the CFG nodes and relationships (see details in Ta-
ble A.5):

– mustBeExecuted: holds whether a statement is unconditionally executed
regardless the execution path.

– exceptionType: string holding the fully qualified name of the exception type
to be thrown.

– methodName: string holding the fully qualified name of the method that may
raise the checked exception, if any.

– label: string holding the label name (if any) of the break/continue state-
ment that causes the control-flow jump.

– caseIndex: integer value representing the index of the case (among all the
other cases contained in the switch) to be executed.

– caseValue: string representing the expression of the case to be executed.

A.4 Call Graph

A.4.1 Nodes

No new nodes are defined for the Call Graph.

85

Appendix A. Graph Representations used in the Design of ProgQuery

Relationship Domain Range Cardinality

CFG ENTRIES CALLABLE DEF CFG ENTRY 0..1

CFG END OF CFG NORMAL END ∪ CFG EXCEPTIONAL END CALLABLE DEF 1

CFG FINALLY TO LAST STMT FINALLY BLOCK CFG LAST STATEMENT IN FINALLY 1

CFG NEXT STATEMENT STATEMENT CFG NODE ∪ STATEMENT 0..1

CFG NEXT STATEMENT IF TRUE
ASSERT STATEMENT ∪ DO WHILE LOOP ∪

FOR LOOP ∪ IF STATEMENT ∪ WHILE LOOP CFG NODE ∪ STATEMENT 1

CFG NEXT STATEMENT IF FALSE
DO WHILE LOOP ∪ FOR LOOP ∪
IF STATEMENT ∪ WHILE LOOP CFG NODE ∪ STATEMENT 1

CFG FOR EACH HAS NEXT FOR EACH LOOP STATEMENT 1

CFG FOR EACH NO MORE ELEMENTS FOR EACH LOOP CFG NODE ∪ STATEMENT 1

CFG SWITCH CASE IS EQUAL TO SWITCH STATEMENT CFG NODE ∪ STATEMENT 0..*

CFG SWITCH DEFAULT CASE SWITCH STATEMENT CFG NODE ∪ STATEMENT 0..1

CFG AFTER FINALLY PREVIOUS BREAK LAST STATEMENT IN FINALLY CFG NODE ∪ STATEMENT 0..1

CFG AFTER FINALLY PREVIOUS CONTINUE LAST STATEMENT IN FINALLY STATEMENT 0..1

CFG NO EXCEPTION LAST STATEMENT IN FINALLY CFG NODE ∪ STATEMENT 1

CFG IF THERE IS UNCAUGHT EXCEPTION
CATCH BLOCK ∪

LAST STATEMENT IN FINALLY
EXCEPTIONAL END ∪ CATCH BLOCK ∪
FINALLY BLOCK ∪ LOCAL VAR DEF 0..1

CFG CAUGHT EXCEPTION CATCH BLOCK LOCAL VAR DEF 0..1

CFG MAY THROW STATEMENT
EXCEPTIONAL END ∪ CATCH BLOCK ∪
FINALLY BLOCK ∪ LOCAL VAR DEF 0..1

CFG THROWS THROW STATEMENT
EXCEPTIONAL END ∪ CATCH BLOCK ∪
FINALLY BLOCK ∪ LOCAL VAR DEF 1

Table A.4: Relationships defined for CFGs.

Property Type Domain Value-Type Cardinality

mustBeExecuted Node STATEMENT Boolean 1

exceptionType Edge
CFG THROWS ∪ CFG MAY THROW ∪ CFG CAUGHT EXCEPTION ∪

CFG IF THERE IS UNCAUGHT EXCEPTION String 1

methodName Edge CFG MAY THROW String 0..1

label Edge AFTER FINALLY PREVIOUS CONTINUE ∪ AFTER FINALLY PREVIOUS BREAK String 0..1

caseValue Edge CFG SWITCH CASE IS EQUAL TO String 1

caseIndex Edge CFG SWITCH CASE IS EQUAL TO ∪ CFG SWITCH DEFAULT CASE Integer 1

Table A.5: Properties defined for CFGs.

86

Appendix A. Graph Representations used in the Design of ProgQuery

Relationship Domain Range Cardinality

CALLS CALLABLE DEF CALL 0..*

HAS DEF CALL CALLABLE DEF 1

REFERS TO CALL CALLABLE DEF 0..1

MAY REFER TO CALL CALLABLE DEF 0..*

Table A.6: Relationships defined for Call Graphs.

A.4.2 Relationships

These are the Call Graph relationships (detailed in Table A.6):

– CALLS: relates a callable definition to the method/constructor invocations
in its body.

– HAS DEF: connects invocations to the static definition of the method/constructor
invoked.

– MAY REFER TO: when a method is overridden, this relationship connects the
invocation to the method definitions that may be called.

– REFERS TO: when only one method/constructor may be called, REFERS TO

connects the call to the definition to be invoked.

A.4.3 Properties

The only property defined is isInitializer for CALLABLE DEF nodes (one-cardinality
and Boolean value-type). It indicates whether a callable definition is an intializer;
i.e., it is either a constructor or a (private or package) method that is only called
from other initializers.

A.5 Type Graph

A.5.1 Nodes

These are the nodes defined for Type Graphs:

– ARRAY TYPE: node representing an array type.

– TYPE DEFINITION: class, enumeration or interface definition.

– CALLABLE TYPE: type of any method or constructor.

– INTERSECTION TYPE: intersection of two or more types (i.e., Java & type con-
structor).

– VOID TYPE: node representing the void type.

– PACKAGE TYPE: type attached to a package reference expression (i.e. java.lang).

– NULL TYPE: node representing the type of null.

– PRIMITIVE TYPE: representation of any Java primitive type.

87

Appendix A. Graph Representations used in the Design of ProgQuery

Relationship Domain Range Cardinality

IS SUBTYPE EXTENDS TYPE DEFINITION TYPE DEFINITION 0..*

IS SUBTYPE IMPLEMENTS CLASS DEF OR ENUM DEF INTERFACE DEF 0..*

ITS TYPE IS CALLABLE DEF ∪ EXPRESSION ∪ VARIABLE DEF TYPE NODE 1

INHERITS FIELD TYPE DEFINITION ATTR DEF 0..*

INHERITS METHOD TYPE DEFINITION METHOD DEF 0..*

OVERRIDES METHOD DEF METHOD DEF 0..1

ELEMENT TYPE ARRAY TYPE TYPE 1

RETURN TYPE CALLABLE TYPE TYPE 1

PARAM TYPE CALLABLE TYPE TYPE 0..*

THROWS TYPE CALLABLE TYPE TYPE 0..*

INSTANCE ARG TYPE CALLABLE TYPE TYPE 0..1

UPPER BOUND TYPE TYPE VAR TYPE 1

LOWER BOUND TYPE TYPE VAR TYPE 1

WILDCARD EXTENDS BOUND WILCARD TYPE TYPE 0..1

WILCARD SUPER BOUND WILCARD TYPE TYPE 0..1

Table A.7: Relationships defined for Type Graphs.

– TYPE VARIABLE: type variables used with generic types and methods.

– UNION TYPE: union of two or more types, used in catch blocks (i.e., Java |
type constructor).

– GENERIC TYPE: a generic type that is parameterized with other types.

– WILDCARD TYPE: node representing a Java wildcard type (i.e., ?).

A.5.2 Relationships

The following relationships are defined for Type Graphs (Table A.7):

– IS SUBTYPE EXTENDS: relates a type definition to its direct supertypes.

– IS SUBTYPE IMPLEMENTS: relates a class or enum definition to its direct super-
interfaces.

– ITS TYPE IS: relates expressions, and variable and method/constructor def-
initions to their type.

– INHERITS FIELD: relates type definitions to their (directly or indirectly) in-
herited fields, if any.

– INHERITS METHOD: relates type definitions to their (directly or indirectly)
inherited methods, provided that they are not overridden.

– OVERRIDES: relates a method definition to the overridden method definition,
if any.

– ELEMENT TYPE: relates an array type to the type of its elements.

– RETURN TYPE: relates a callable type to its return type.

88

Appendix A. Graph Representations used in the Design of ProgQuery

Property Type Domain Value-Type Cardinality

actualType Node
EXPRESSION ∪ CALLABLE DEF ∪

VARIABLE DEF String 1

typeKind Node
EXPRESSION ∪ CALLABLE DEF ∪

VARIABLE DEF

{ ARRAY, BOOLEAN, BYTE, CHAR, DECLARED,
DOUBLE, EXECUTABLE,

FLOAT, INT, INTERSECTION, LONG, NULL,
PACKAGE, SHORT, TYPE VAR, VOID, UNION,

WILDCARD }

1

typeBoundKind Node WILCARD TYPE
{ SUPER WILDCARD,

EXTENDS WILDCARD, UNBOUNDED WILDCARD } 1

Table A.8: Properties defined for Type Graphs.

– PARAM TYPE: relates a callable type to its parameter types, if any.

– THROWS TYPE: connects a callable type to the exceptions in its throws clause,
if any.

– INSTANCE ARG TYPE: relates a constructor type to the type to be instantiated.

– UPPER BOUND TYPE: given < T1 extends T2 >, this relationship connects T1 to
T2.

– LOWER BOUND TYPE: given <? super T >, this relationship connects the type
that the compiler instantiates for ? to T .

– WILDCARD EXTENDS BOUND: relates a wildcard to the type included in its extends
clause, if any (e.g., ? extends Type).

– WILCARD SUPER BOUND: relates a wildcard to the type included in its super

clause, if any (e.g., ? super Type).

A.5.3 Properties

The following properties are defined (Table A.8):

– actualType: string representing the type of an expression, callable or vari-
able definition.

– typeKind: string representing a type generalization (Table A.8).

– typeBoundKind: string describing the kind of bound of a wildcard type
(Table A.8).

A.6 Program Dependency Graph

A.6.1 Nodes

The following new nodes are defined for PDGs:

– THIS REF: represents the implicit object (this) in each type definition.

– INITIALIZATION: represents the initialization of variable (attribute, param-
eter or local variable) definitions.

89

Appendix A. Graph Representations used in the Design of ProgQuery

Relationship Domain Range Cardinality

USED BY VARIABLE DEF IDENTIFIER ∪ MEMBER SELECTION 0..*

MODIFIED BY VARIABLE DEF
ASSIGNMENT ∪ COMPOUND ASSIGNMENT ∪

UNARY OPERATION 0..*

STATE MODIFIED BY VARIABLE DEF ∪ THIS REF
ASSIGNMENT ∪ COMPOUND ASSIGNMENT ∪

UNARY OPERATION ∪ CALL ∪ CALLABLE DEFINITION 0..*

STATE MAY BE MODIFIED BY VARIABLE DEF ∪ THIS REF CALL ∪ CALLABLE DEFINITION 0..*

HAS THIS REFERENCE TYPE DEFINITION THIS REF 0..1

Table A.9: Relationships defined for PDGs.

A.6.2 Relationships

Relationships defined for PDGs (Table A.9):

– USED BY: relates a variable (field, parameter or local variable) definition to
the expressions where the variable is read, if any.

– MODIFIED BY: relates a variable definition to the expressions in which its
value is modified.

– STATE MODIFIED BY: relates a variable definition or the implicit object (this)
to the expressions or callable definitions where its state is certainly mutated,
if any.

– STATE MAY BE MODIFIED BY: relates a variable definition or the implicit object
(this) to the invocations or callable definitions where its state may be
modified.

– HAS THIS REFERENCE: relates a type definition to the implicit object reference
(this).

A.6.3 Properties

The property isOwnAccess is defined for the first four PDG relationships (0..1
cardinality and Boolean value-type). It indicates whether an expression accesses
a field of the implicit object (this).

A.7 Class Dependency Graph

For CDGs, we define two relationships:

– USES TYPE DEF: connects two type definitions (declared in the project or not),
representing that the source node depends on the target one. Therefore, its
domain and range are TYPE DEFINITION; its cardinality is 0..*.

– HAS INNER TYPE DEF: relates a compilation unit to the inner types defined in-
side it. Its domain, range and cardinality are, respectively, COMPILATION UNIT,
TYPE DEFINITION and 0..*.

90

Appendix A. Graph Representations used in the Design of ProgQuery

Relationship Domain Range Cardinality

PROGRAM DECLARES PACKAGE PROGRAM PACKAGE 1..*

PACKAGE HAS COMPILATION UNIT PACKAGE COMPILATION UNIT 1..*

DEPENDS ON PACKAGE PACKAGE PACKAGE 0..*

DEPENDS ON NON DECLARED PACKAGE PACKAGE PACKAGE 0..*

Table A.10: Relationships defined for Package Graphs.

A.8 Package Graph

A.8.1 Nodes

Two nodes are added for Package Graphs:

– PACKAGE: represents any package declaration defined or used in the program.

– PROGRAM: models the whole program, representing the graph root.

A.8.2 Relationships

What follows are the Package Graph relationships defined (details in Table A.10):

– PROGRAM DECLARES PACKAGE: relates a program to the packages defined in it.

– PACKAGE HAS COMPILATION UNIT: relates a package to the compilation units
it contains.

– DEPENDS ON PACKAGE: relates a package to the packages it depends on, if any;
target packages must be defined in the source code.

– DEPENDS ON NON DECLARED PACKAGE: relates a package to the packages it de-
pends on, if any; target packages are not defined in the source code.

A.8.3 Properties

Finally, the following two properties are included in Package Graphs:

– ID: node property defined for PROGRAM. It is a unique identifier for each
program. Its value-type is string and has cardinality of one.

– timestamp: a property of the PROGRAM node indicating when the program
was inserted in the database. Its value-type is date and has cardinality of
one.

91

Appendix B

Analyses

What follows it the Cypher source code for implementing in ProgQuery the
13 analyses described in Section 5.1:

B.1 MET53-J

MATCH (enclosingCU)-[:HAS_TYPE_DEF | :HAS_INNER_TYPE_DEF]

->(typeDec)-[:DECLARES_METHOD | :DECLARES_CONSTRUCTOR]

->(md)-[:CALLABLE_RETURN_TYPE]->(typeRet)

WHERE NOT typeRet:PRIMITIVE_TYPE AND

md.fullyQualifiedName CONTAINS ':clone()'

OPTIONAL MATCH (md)-[:CALLS]->()-[:HAS_DEF]->(superDec)

-[:CALLABLE_RETURN_TYPE]->(superRet)

WHERE superDec.fullyQualifiedName CONTAINS ':clone()' AND

NOT superDec.fullyQualifiedName CONTAINS

(typeDec.fullyQualifiedName+':') AND

NOT superRet:PRIMITIVE_TYPE

WITH enclosingCU, md, COUNT(superDec) as superCallsCount

WHERE superCallsCount=0

RETURN 'Warning [CMU-MET53], you must call super.clone in

every overridden clone method. Line ' + md.lineNumber +

' in ' + enclosingCU.fileName + '.'

B.2 MET55-J

MATCH (md)-[:CALLABLE_RETURN_TYPE]->(rt)

-[:ITS_TYPE_IS |:PARAMETERIZEDTYPE_TYPE*0..]->()

-[:IS_SUBTYPE_EXTENDS | :IS_SUBTYPE_IMPLEMENTS*0..]

->(collection)

WHERE collection.fullyQualifiedName='java.util.Collection<E>'

OR collection:ARRAY_TYPE WITH DISTINCT md

MATCH (enclosingCU)-[:HAS_TYPE_DEF | :HAS_INNER_TYPE_DEF]

->()-[:DECLARES_METHOD]->(md)<-[:CFG_END_OF]-(normalEnd)

<-[:CFG_NEXT_STATEMENT]-(:RETURN_STATEMENT)-[:RETURN_EXPR]->()

-[:CONDITIONAL_EXPR_THEN |:CONDITIONAL_EXPR_ELSE*0..]

92

Appendix B. Analyses

->(nullRet{typetag:'NULL_LITERAL'})

WITH enclosingCU, nullRet WHERE nullRet IS NOT NULL

RETURN 'Warning [CMU-MET55], you must not return null when you can

return an empty collection or array.Line' + nullRet.lineNumber +

' in ' + enclosingCU.fileName + '.'

B.3 SEC56-J

MATCH (class)-[:DECLARES_FIELD]->(f{isTransient:false})-[:ITS_TYPE_IS]

->(aux)-[:IS_SUBTYPE_EXTENDS | :IS_SUBTYPE_IMPLEMENTS*0..]

->(fTypeOrSupertype),

(class)-[:IS_SUBTYPE_EXTENDS | :IS_SUBTYPE_IMPLEMENTS*]

->(superInt:INTERFACE_DEF{fullyQualifiedName:'java.io.Serializable'})

WHERE fTypeOrSupertype.fullyQualifiedName IN ['java.io.File',

'org.omg.CosNaming.NamingContext' ,'org.omg.CORBA.DomainManager',

'org.omg.PortableInterceptor.ObjectReferenceFactory']

RETURN DISTINCT 'Warning [CMU-SEC56], you must not serialize direct handles

to system resources like field ' + f.name + '(an instance of ' +

fTypeOrSupertype.fullyQualifiedName + '). Line ' + f.lineNumber +

' in ' + class.fullyQualifiedName + '.'

B.4 DCL56-J

MATCH (enclosingCU)-[:HAS_TYPE_DEF | :HAS_INNER_TYPE_DEF]->()

-[:DECLARES_METHOD | :DECLARES_CONSTRUCTOR]->(enclosingM)

-[:CALLS]->(inv)-[:HAS_DEF]->(md)

WHERE md.fullyQualifiedName ='java.lang.Enum:ordinal()int'

RETURN 'Warning [CMU-DEC56], you should not attach significance to the

ordinal of an enum. Line ' + inv.lineNumber + ' in ' +

enclosingCU.fileName + '.'

B.5 MET50-J

MATCH (enclosingCU)-[:HAS_TYPE_DEF | :HAS_INNER_TYPE_DEF]->(class)

-[:DECLARES_METHOD | :DECLARES_CONSTRUCTOR]->(md)

-[:CALLABLE_HAS_PARAMETER]->(p:PARAMETER_DEC)

WITH enclosingCU, md, class, COLLECT(p.actualType) as params

MATCH (class)-[:DECLARES_METHOD | :DECLARES_CONSTRUCTOR]->(md2)

-[:CALLABLE_HAS_PARAMETER]->(p2)

WHERE md.name = md2.name AND md <> md2

WITH enclosingCU, md, md2, params, COLLECT(p2.actualType) as params2

WHERE ALL(p IN params WHERE p IN params2) AND

all(p IN params2 WHERE p IN params) AND

((SIZE(params)>=4 AND SIZE(params2)>=4) OR SIZE(params)=SIZE(params2))

RETURN 'Warning [CMU-MET50], you must avoid confusing overloadings like ' +

md.fullyQualifiedName + ' in line ' + md.lineNumber +

' (very similar to declaration in line ' + md2.lineNumber + ') in ' +

enclosingCU.fileName + '.'

93

Appendix B. Analyses

B.6 DCL60-J

MATCH (package1)-[:DEPENDS_ON_PACKAGE]->(package2),p=(package2)

-[:DEPENDS_ON_PACKAGE*]->(package1)

WITH REDUCE(warning='', package IN package1 + NODES(p)| warning +

'->' +package.name) as packageDepList

RETURN 'Warning [CMU-DCL60] There is a cycle between packages

caused by the dependencies between ' +

SUBSTRING(packageDepList,2,LENGTH(packageDepList)) +

'. You should undo them.'

B.7 OBJ54-J

MATCH (varDec:LOCAL_DEF)-[:MODIFIED_BY]->(ass:ASSIGNMENT)

-[:ASSIGNMENT_RHS]->(:LITERAL{typeKind:'NULL'})

OPTIONAL MATCH (varDec)-[:USED_BY|STATE_MODIFIED_BY]->(use)

WITH varDec,database.procedures.getEnclosingStmt(ass) as assStat,

COLLECT(database.procedures.getEnclosingStmt(use)) as useStats

WHERE SIZE(FILTER(succ IN database.procedures.getAnySucc(assStat)

WHERE succ IN useStats))=0

RETURN 'Warning [CMU-OBJ54] You must not try to help garbage collector

setting references to null when they are no longer used.

To make your code clearer, just delete the assignment in line ' +

assStat.lineNumber + ' of the variable ' + varDec.name +

' declared in class ' + database.procedures.getEnclosingClass(varDec)

.fullyQualifiedName + '.'

B.8 OBJ50-J

MATCH (variable:VARIABLE_DEF {isFinal:true})

-[mutation:STATE_MODIFIED_BY|STATE_MAY_BE_MODIFIED_BY]

->(mutatorExpr)

WITH variable, mutation, mutatorExpr,

database.procedures.getEnclMethodFromExpr(mutatorExpr)

as mutatorMethod

MATCH (mutatorMethod)

<-[:DECLARES_METHOD| DECLARES_CONSTRUCTOR|HAS_STATIC_INIT]

-(mutatorEnclClass)<-[:HAS_TYPE_DEF|:HAS_INNER_TYPE_DEF]

-(mutatorCU:COMPILATION_UNIT)

WHERE NOT(variable:ATTR_DEF AND mutation.isOwnAccess

AND mutatorMethod.isInitializer)

WITH variable, database.procedures.getEnclosingClass(variable)

as variableEnclClass, REDUCE(seed='', mutationWarn IN COLLECT(

' Line ' + mutatorExpr.lineNumber + ', column ' +

mutatorExpr.column + ', file \''+ mutatorCU.fileName + '\'')

| seed + '\n' + mutationWarn) as mutatorsMessage

MATCH (variableEnclClass)<-[:HAS_TYPE_DEF| :HAS_INNER_TYPE_DEF]

-(variableCU:COMPILATION_UNIT)

RETURN 'Warning [CMU-OBJ50] The state of variable \'' + variable.name +

94

Appendix B. Analyses

'\' (in line ' + variable.lineNumber + ', file \'' +

variableCU.fileName + '\') is mutated, but declared final.

The state of \'' + variable.name + '\' is mutated in:' +

mutatorsMessage

B.9 ERR54-J

MATCH (closeableSubtype:TYPE_DEFINITION)

-[:IS_SUBTYPE_EXTENDS | :IS_SUBTYPE_IMPLEMENTS*0..]

->(closeableInt:INTERFACE_DEF{fullyQualifiedName:

'java.lang.AutoCloseable'})

WITH DISTINCT closeableSubtype.fullyQualifiedName as className

MATCH (closeableDec{actualType:className})-[:MODIFIED_BY]->(assign)

WHERE closeableDec:VAR_DEC

OPTIONAL MATCH (closeableDec)<-[r:TRY_RESOURCES]-()

WITH database.procedures.getEnclosingStmt(assign) as assignStat,

r, closeableDec

WHERE r IS NULL UNWIND database.procedures.

getAnySuccNotItself(assignStat) as prev

OPTIONAL MATCH (mInv:METHOD_INVOCATION)-[:METHODINVOCATION_METHOD_SELECT]

->(mSelect:MEMBER_SELECTION{memberName:'close'})-[:MEMBER_SELECT_EXPR]

->(id)<-[:USED_BY]-(closeableDec),(prev)

-[exceptionRel:CFG_IF_THERE_IS_UNCAUGHT_EXCEPTION|

:CFG_MAY_THROW|:CFG_THROWS]

->(afterEx)

WITH COLLECT(DISTINCT database.procedures.getEnclosingStmt(mInv))

as closes, prev,closeableDec, afterEx,exceptionRel

WHERE NOT prev IN closes AND

ANY(prevSucc IN database.procedures.getAnySuccNotItself(prev)

WHERE prevSucc IN closes)

OPTIONAL MATCH p=(afterEx)-[:CFG_NEXT_STATEMENT|:CFG_NEXT_STATEMENT_IF_TRUE|

:CFG_NEXT_STATEMENT_IF_FALSE | :CFG_FOR_EACH_HAS_NEXT |

:CFG_FOR_EACH_NO_MORE_ELEMENTS | :CFG_IF_THERE_IS_UNCAUGHT_EXCEPTION |

:CFG_NO_EXCEPTION|:CFG_CAUGHT_EXCEPTION|:CFG_AFTER_FINALLY_PREVIOUS_BREAK|

:CFG_AFTER_FINALLY_PREVIOUS_CONTINUE | :CFG_SWITCH_CASE_IS_EQUAL_TO |

:CFG_SWITCH_DEFAULT_CASE | :CFG_MAY_THROW | :CFG_THROWS *0..]

->(reachableAfterEx)

WHERE reachableAfterEx IN closes

WITH prev as prevs, closeableDec,p,exceptionRel,

CASE WHEN p IS NULL THEN NULL

ELSE EXTRACT (index IN RANGE(0,SIZE(NODES(p)))

| index=0 OR TYPE(RELATIONSHIPS(p)[index-1]) IN

['CFG_THROWS' ,'CFG_IF_THERE_IS_UNCAUGHT_EXCEPTION' ,'CFG_MAY_THROW'])

END as previousThrow

WITH prevs, closeableDec,p,exceptionRel,

CASE WHEN p IS NULL THEN NULL

ELSE EXTRACT (index IN RANGE(0,SIZE(NODES(p))) |

CASE WHEN NODES(p)[index]:CATCH_BLOCK OR previousThrow[index] AND

NODES(p)[index]:LOCAL_VAR_DEF THEN 'catch'

ELSE CASE WHEN previousThrow[index] THEN

95

Appendix B. Analyses

CASE WHEN index=0 THEN exceptionRel.exceptionType

ELSE RELATIONSHIPS(p)[index-1].exceptionType

END ELSE

CASE WHEN NODES(p)[index]:TRY_STATEMENT THEN 'newtry'

ELSE NULL

END END

END)

END as exFlow

WITH p,closeableDec,prevs,

CASE WHEN p IS NULL THEN NULL

ELSE EXTRACT(relIndex IN RANGE(0,SIZE(RELATIONSHIPS(p))) |

exFlow[LAST(FILTER(exIndex IN RANGE(0,SIZE(exFlow))

WHERE exIndex<=relIndex AND NOT exFlow[exIndex] IS NULL))])

END as exFlow

WITH closeableDec,prevs, NOT ANY(x IN COLLECT(CASE WHEN p IS NULL

THEN FALSE ELSE ALL(relIndex IN RANGE(0,SIZE(RELATIONSHIPS(p)))

WHERE CASE WHEN TYPE(RELATIONSHIPS(p)[relIndex])='CFG_NO_EXCEPTION'

THEN exFlow[relIndex] IN ['catch' , 'newtry']

ELSE CASE WHEN TYPE(RELATIONSHIPS(p)[relIndex])=

'CFG_IF_THERE_IS_UNCAUGHT_EXCEPTION'

THEN exFlow[relIndex]=RELATIONSHIPS(p)[relIndex].exceptionType

ELSE TRUE END END)

END)

WHERE x) as truePathToClose

WITH closeableDec,COLLECT(prevs) as prevs,

COLLECT(truePathToClose) as truePathToClose

WHERE ANY (x IN truePathToClose WHERE x)

RETURN 'Warning [CMU-ERR54] variable ' + closeableDec.name +

'(defined in line'+closeableDec.lineNumber+', class ' +

database.procedures.getEnclosingClass(closeableDec).

fullyQualifiedName + ') might not be properly closed,

as statement(s) (in lines ' +

EXTRACT(prev IN prevs | prev.lineNumber) +

') may throw an exception.'

B.10 MET52-J

MATCH (enclosingCU)-[:HAS_TYPE_DEF |:HAS_INNER_TYPE_DEF]

->(typeDec{accessLevel:'public'})-[:DECLARES_METHOD]

->(method{accessLevel:'public'})-[:CALLABLE_HAS_PARAMETER]

->(param) -[:USED_BY]->(id)<-[:MEMBER_SELECT_EXPR]

-(mSelect:MEMBER_SELECTION{memberName:'clone'})

<-[:METHODINVOCATION_METHOD_SELECT]-(mInv:METHOD_INVOCATION),

(param)-[:HAS_VARIABLEDECL_TYPE]->()-[:PARAMETERIZEDTYPE_TYPE*0..1]

->()-[:ITS_TYPE_IS]->(pType)

WHERE mSelect.actualType CONTAINS '()' AND NOT pType.isFinal AND

(NOT pType.isDeclared OR pType.accessLevel='public')

RETURN 'Warning [CMU-MET52] You must not use the clone method to copy

unstrusted parameters (like parameter ' + param.name +

', cloned in line ' + mInv.lineNumber+ ' in method ' +

96

Appendix B. Analyses

method.name + ', file ' + enclosingCU.fileName + ').'

B.11 DCL53-J

MATCH (typeDec)-[:DECLARES_FIELD]->(attr:ATTR_DEF)

WHERE NOT ((attr.accessLevel='public' OR attr.accessLevel='protected' AND

NOT typeDec.isFinal) AND typeDec.accessLevel='public') AND

NOT(attr.isStatic AND attr.actualType='long' AND attr.isFinal AND

attr.name='serialVersionUID')

OPTIONAL MATCH (attr)-[attrUseRel:USED_BY | :STATE_MODIFIED_BY]->(exprUse)

WITH typeDec.fullyQualifiedName as className,

attr,database.procedures.getEnclosingStmt(exprUse) as exprUseStat, exprUse

OPTIONAL MATCH (attr)-[attrModifRel:MODIFIED_BY]

->(modif)-[:ASSIGNMENT_LHS]->(lhs_expr)

WHERE database.procedures.getEnclosingMethod(database.procedures.

getEnclosingStmt(modif))=database.procedures.

getEnclosingMethod(exprUseStat) AND

database.procedures.getEnclosingStmt(modif).position < exprUseStat.position

WITH attrModifRel,attrUseRel,typeDec.fullyQualifiedName as className,

attr,outerBlock, exprUseStat, exprUse ,method, exprModStat,

database.procedures.getEnclosingStmt(modif) as modif, lhs_expr

MATCH q=(method)-[:CFG_NEXT_STATEMENT | :CFG_NEXT_STATEMENT_IF_TRUE |

:CFG_NEXT_STATEMENT_IF_FALSE | :CFG_FOR_EACH_HAS_NEXT |

:CFG_FOR_EACH_NO_MORE_ELEMENTS | :CFG_IF_THERE_IS_UNCAUGHT_EXCEPTION |

:CFG_NO_EXCEPTION | :CFG_CAUGHT_EXCEPTION |

:CFG_AFTER_FINALLY_PREVIOUS_BREAK | :CFG_AFTER_FINALLY_PREVIOUS_CONTINUE |

:CFG_SWITCH_CASE_IS_EQUAL_TO | :CFG_SWITCH_DEFAULT_CASE | :CFG_MAY_THROW |

:CFG_THROWS | :CFG_ENTRIES *]->(exprUseStat)

WITH attrModifRel,attrUseRel,exprModStat IN NODES(q) as modInPath, className,

attr,outerBlock, exprUseStat, exprUse ,method, exprModStat, modif, lhs_expr

OPTIONAL MATCH (exprUse)-[:MEMBER_SELECT_EXPR]->(memberSelectExprUse)

<-[:USED_BY]-(varDec)

OPTIONAL MATCH p=(varDec)-[:STATE_MODIFIED_BY]->(modif)

OPTIONAL MATCH (lhs_expr)-[:MEMBER_SELECT_EXPR]->(memberSelectExprModif)

WITH attrModifRel,attrUseRel,ALL(modInPath IN COLLECT(modInPath)

WHERE modInPath) as unconditionalAssign, method,p,className,

attr.lineNumber as line, attr.name as attr,exprUse, modif, lhs_expr,

memberSelectExprUse, memberSelectExprModif, exprUseStat, exprModStat

WITH attrModifRel,attrUseRel,className, attr,line, exprUse,

unconditionalAssign, attrUseRel.isOwnAccess AND

attrModifRel.isOwnAccess OR

(NOT p IS NULL AND NOT memberSelectExprUse IS NULL AND

NOT memberSelectExprModif IS NULL AND

memberSelectExprUse:IDENTIFIER AND

memberSelectExprModif:IDENTIFIER) as isTheSameVar

WITH line,className, attr ,exprUse,

ANY(x IN COLLECT(unconditionalAssign AND isTheSameVar) WHERE x)

as prevAssign

WITH line,className, attr , ALL(x IN COLLECT(prevAssign) WHERE x)

OR exprUse IS NULL as isSillyAttr WHERE isSillyAttr

97

Appendix B. Analyses

RETURN 'Warning [CMU-DCL53] You must minimize the scope of the variables.

You can minimize the scope of the attribute ' + attr +

'(declared in line ' + line + ') in class ' + className +

' by transforming it into a local varaible (as everytime its value

is used in a method, there is a previous unconditional assignment).'

B.12 OBJ56-J

MATCH (enclosingType)-[:DECLARES_FIELD]->(field:ATTR_DEF)-[:USED_BY]

->(retExpr)<-[:RETURN_EXPR]-(retStat)

WITH enclosingType,field,database.procedures.getEnclosingMethod(retStat)

as method WHERE method.accessLevel='public'

MATCH (method)<-[:DECLARES_METHOD]-(classExposingF{accessLevel:'public',

isAbstract:false})

WHERE NOT field.accessLevel='public' AND (NOT field.accessLevel='protected'

OR classExposingF.isFinal)

MATCH (field)-[:ITS_TYPE_IS]->(fieldType)

<-[:IS_SUBTYPE_EXTENDS|IS_SUBTYPE_IMPLEMENTS*0..]

-(fieldTypeOrSubtype), accessibleMembers=(fieldTypeOrSubtype)

-[:DECLARES_FIELD|ITS_TYPE_IS|INHERITS_FIELD*0..]->(accessibleMember)

WITH field,fieldType=fieldTypeOrSubtype as isFieldType,enclosingType,

NODES(accessibleMembers) as accessibleMembers,accessibleMember,

fieldTypeOrSubtype, COLLECT(DISTINCT method.fullyQualifiedName+'

-> line '+method.lineNumber) as publicGetters,

EXTRACT(index IN RANGE(0,SIZE(NODES(accessibleMembers))-1) |

[CASE WHEN index=0 THEN field

ELSE NODES(accessibleMembers)[index-1] END,

NODES(accessibleMembers)[index]]) as accessibleMembersAndPrevs

WITH field,isFieldType,enclosingType, accessibleMember,fieldTypeOrSubtype,

publicGetters, accessibleMembersAndPrevs,

LAST(accessibleMembersAndPrevs)[0] as accessibleMemberPrev

UNWIND accessibleMembersAndPrevs as accMemberAndPrev

OPTIONAL MATCH (accesibleField)-[:USED_BY]->(fieldExpr)<-[:RETURN_EXPR]

-(returnStat),(method{accessLevel:'public'})

<-[:DECLARES_METHOD|INHERITS_METHOD]-(accessibleType)

WHERE database.procedures.getEnclosingMethod(returnStat)=method AND

accesibleField=accMemberAndPrev[1] AND

accessibleType=accMemberAndPrev[0]

WITH field,isFieldType,enclosingType, method,publicGetters,

accMemberAndPrev, accessibleMember,accessibleMemberPrev,

fieldTypeOrSubtype, COLLECT(method) as gettersForCurrentMember

WITH field,isFieldType,enclosingType,fieldTypeOrSubtype,publicGetters,

accessibleMember,accessibleMemberPrev,

ALL(isAccHere IN COLLECT(CASE WHEN accMemberAndPrev[1]:ATTR_DEF

THEN NOT accMemberAndPrev[1].isStatic AND

(accMemberAndPrev[1].accessLevel='public' OR

SIZE(gettersForCurrentMember)>0)

ELSE CASE WHEN accMemberAndPrev[1]:ARRAY_TYPE THEN TRUE

ELSE EXISTS(accMemberAndPrev[1].accessLevel) AND

accMemberAndPrev[1].accessLevel='public' END END)

98

Appendix B. Analyses

WHERE isAccHere) as isExternallyAcc

OPTIONAL MATCH (accessibleMember)-[:DECLARES_METHOD|INHERITS_METHOD]

->(mutator:METHOD_DEF{accessLevel:'public'})

<-[:STATE_MAY_BE_MODIFIED_BY|STATE_MODIFIED_BY]-(:THIS_REF)

WITH field,isFieldType,fieldTypeOrSubtype,enclosingType, publicGetters,

COLLECT(DISTINCT 'MUTATOR METHOD '+mutator.fullyQualifiedName +

' -> line ' + mutator.lineNumbe) as allMut,

EXTRACT(accField IN FILTER(accMember IN COLLECT(DISTINCT accessibleMember)

WHERE accMember:ATTR_DEF AND NOT accMember.isStatic AND

NOT accMember.isFinal AND accMember.accessLevel='public') |

'PUBLIC NON-FINAL FIELD ' + accField.name + '-> line' +

accField.lineNumber) as externallyMutableFields,

FILTER(x IN COLLECT(DISTINCT [accessibleMember:ARRAY_TYPE AND

isExternallyAcc,'ACCESIBLE ARRAY FIELD ' + accessibleMemberPrev.name +

'-> line ' +accessibleMemberPrev.lineNumber])

WHERE x[0]) as arrayFieldsExposed

WITH field,isFieldType,enclosingType,publicGetters,fieldTypeOrSubtype.

fullyQualifiedName as fieldTypeOrSubtype,allMut,externallyMutableFields,

arrayFieldsExposed, SIZE(allMut + externallyMutableFields +

arrayFieldsExposed)>0 as isExtMutable

WHERE CASE WHEN isFieldType THEN isExtMutable ELSE NOT isExtMutable END

WITH field,enclosingType,publicGetters,

EXTRACT(subtypeNameInfo IN FILTER(subtypeNameInfo IN COLLECT(

[isFieldType,fieldTypeOrSubtype])

WHERE NOT subtypeNameInfo[0])| subtypeNameInfo[1]) as immutableSubtypes,

FILTER(subTypePair IN COLLECT([isFieldType, allMut +

externallyMutableFields + arrayFieldsExposed])

WHERE subTypePair[0])[0][1] as mutabilityInfo

WHERE NOT mutabilityInfo IS NULL

RETURN 'Warning[OBJ-56] Field ' + field.name + ' declared in line ' +

field.lineNumber + ' in class ' + enclosingType.fullyQualifiedName +

' is not public, but it is exposed in public methods such as ' +

publicGetters + '. The problem is that there is at least one member

(like ' + mutabilityInfo + ') that can be accessed by a client to

change the state of the field ' + field.name +

CASE WHEN SIZE(immutableSubtypes)=0 THEN '. You should implement

an appropriate inmutable subtype as a wrapper for your attribute,

as you have not created any yet.'

ELSE '. Remember to use an appropiate inmutable subtype (such as ' +

immutableSubtypes + ') as a wrapper for your attribute.'

END

B.13 NUM50-J

MATCH (varDec)-[:MODIFIED_BY | :HAS_VARIABLEDECL_INIT]

->(mod)-[:ASSIGNMENT_RHS | :INITIALIZATION_EXPR]->(rightSide)

WHERE varDec.actualType IN ['float', 'double']

OPTIONAL MATCH (binopR{actualType:'int'})<-[:BINOP_RHS]-(division)

<-[:BINOP_LHS|:BINOP_RHS|:UNARY_ENCLOSES |:CONDITIONAL_EXPR_ELSE|

:CONDITIONAL_EXPR_THEN *0..]-(rightSide),(division)-[:BINOP_LHS]

99

Appendix B. Analyses

->({actualType:'int'})

WITH varDec, COLLECT(rightSide.actualType IN ['float','double'])

as rightSidesAreFloat, FILTER(x IN COLLECT([rightSide,binopR])

WHERE NOT x[1] IS NULL AND x[0].operator='DIVIDE') as lines

WHERE NOT ANY(x IN rightSidesAreFloat WHERE x) AND SIZE(lines)>0

RETURN 'Warning [CMU-NUM50] A truncated integer division was detected

in line(s) ' + REDUCE(seed='',x IN lines | CASE WHEN seed

CONTAINS (x[0].lineNumber + '') THEN seed ELSE seed +

x[0].lineNumber + ',' END) + ', assigned to variables of type float

or double. If you want to make a float/double division and assign the

result to the variable ' + varDec.name + ', you must include an

operand as float/double. Otherwise you can change the type of ' +

varDec.name + ' from float/double to int, as it is never used to

store an actual float/double value.'

100

Appendix C

Features of the homogeneous
datasets

Tables C.1-C.5 show the different features used to build the homogeneous datasets.
We do not include any feature that may depend on the size of the program. For
example, Table C.5 does not include features such as the number of classes or
interfaces. Their occurrence is considered, yet relative to the number of types
used in the program.

Name Description

Category Syntactic category of the current node, given the abstract
grammar for the Java language.

First, second and third child Syntactic category of the corresponding child node.
Parent node Syntactic category of the parent node.
Role Role played by the current node in the structure of its parent

node.
Height Distance (number of edges) from the current node to the root

node in the enclosing type (class, interface or enumeration).
Depth Maximum distance (number of edges) of the longest path

from the current node to a leaf node.

Table C.1: Feature abstractions used for statements.

101

Appendix C. Features of the homogeneous datasets

Name Description

Visibility Public, protected, package or private.
IsAbstract, IsStatic, IsFinal True or false.
ReturnsVoid, Overrides True or false.
Number of parameters Number of declared parameters.
Number of generics Number of type parameters declared in a generic method.
Number of throws Number of exceptions declared in the throws clause.
Number of annotations Number of annotations declared for that method.
Number of statements Number of statements used in the method body.
Number of local variables Number of local variables declared.
Naming convention Naming convention used for the method name (snake case,

upper, lower, camel up or camel down).
Main naming locals Main naming convention used for local variables.

Table C.2: Feature abstractions used for methods.

Name Description

Visibility Public, protected, package or private.
IsDefined Whether a value is defined in its declaration.
IsStatic, IsFinal True or false.
Number of annotations Number of annotations declared for that field.
Value If any, category of the expression assigned in its definition.
Naming convention Snake case, upper, lower, camel up or camel down.

Table C.3: Feature abstractions used for fields.

Name Description

Visibility Public or package (non public).
Category Class, interface or enumeration.
IsAbstract, IsStatic, IsFinal True or false.
Extends Whether the type extends another type.
Number of annotations Number of annotations declared for that type.
Number of extends Number of types that the current type extends (Java interfaces

may extend any number of interfaces).
Number of implements Number of interfaces implemented.
Number of generics Number of type parameters declared in that generic type.
Number of methods Number of methods declared for that type.
Number of overloaded Number of overloaded methods declared for that type.
Number of constructors Number of constructors implemented in that type.
Number of fields Number of fields defined in that type.
Number of nested classes Number of nested classes defined in that type.
Number of inner classes Number of inner classes defined in that type.
Naming convention Naming convention used for the type name (snake case, upper,

lower, camel up or camel down).

Table C.4: Feature abstractions used for types.

102

Appendix C. Features of the homogeneous datasets

Name Description

Class percentage Percentage of classes (out of all the types) defined in that program.
Interface percentage Percentage of interfaces (out of all the types) defined in that pro-

gram.
Enum percentage Percentage of enumerations (out of all the types) defined in that

program.
Code in default package Whether the program implements types in the default package.
Code in packages Whether the program implements types inside packages.

Table C.5: Feature abstractions used for programs.

103

Appendix D

Publications

The research work of this PhD thesis has been published in different journals.
The following publications were published during the development of this work:

– Oscar Rodriguez-Prieto, Alan Mycroft, Francisco Ortin. An Efficient and
Scalable Platform for Java Source Code Analysis using Overlaid Graph Rep-
resentations. IEEE Access, volume 8, pp. 1-22, May 2020, doi: 10.1109/AC-
CESS.2020.2987631 JCR Impact Factor 4.098 (Q1).

– Francisco Ortin, Oscar Rodriguez-Prieto, Nicolas Pascual, Miguel Garcia.
Heterogeneous tree structure classification to label Java programmers ac-
cording to their expertise level. Future Generation Computer Systems, vol-
ume 105, pp. 380-394, April 2020, doi: 10.1016/j.future.2019.12.016. JCR
Impact Factor 5.768 (Q1).

– Oscar Rodriguez-Prieto, Francisco Ortin, Donna O’Shea. Efficient Runtime
Aspect Weaving for Java Applications. Information and Software Technol-
ogy, volume 100, pp. 73-86, August 2018, doi: 10.1016/j.infsof.2018.03.012.
JCR Impact Factor 2.921 (Q1).

– Francisco Ortin, Javier Escalada, Oscar Rodriguez-Prieto. Big Code: New
Opportunities for Improving Software Construction. Journal of Software,
volume 11, issue 11, pp. 1083-1088, November 2016,
doi: 10.17706/jsw.11.11.1083-1088. Scimago Impact Factor 0.556 (Q3).

– Oscar Rodriguez-Prieto, Lourdes Araujo, Juan Martinez-Romo. Discover-
ing related scientific literature beyond semantic similarity: a new co-citation
approach. Scientometrics, volume 120, issue 1, pp. 105-127, May 2019, doi:
10.1007/s11192-019-03125-9. JCR Impact Factor 2.770 (Q2).

104

http://doi.org/10.1109/ACCESS.2020.2987631
http://doi.org/10.1109/ACCESS.2020.2987631
http://doi.org/10.1016/j.future.2019.12.016
http://doi.org/10.1016/j.infsof.2018.03.012
http://doi.org/10.17706/jsw.11.11.1083-1088
http://doi.org/10.1007/s11192-019-03125-9

References

[1] Andrew W Appel and Jens Palsberg. Modern compiler implementation in
Java. Cambridge University Press, New York, NY, USA, 2 edition, 2003.
1, 18

[2] Raoul-Gabriel Urma and Alan Mycroft. Programming language evolution
via source code query languages. In Proceedings of the ACM 4th An-
nual Workshop on Evaluation and Usability of Programming Languages and
Tools, PLATEAU ’12, page 35–38, New York, NY, USA, 2012. Association
for Computing Machinery. 1

[3] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of
Program Analysis. Springer Publishing Company, Incorporated, 2010. 1

[4] Francisco Ortin, Javier Escalada, and Oscar Rodriguez-Prieto. Big Code:
new opportunities for improving software construction. Journal of Software,
11(11):1083–1088, 2016. 1, 5

[5] Xiaoyin Wang, David Lo, Jiefeng Cheng, Lu Zhang, Hong Mei, and Jef-
frey Xu Yu. Matching dependence-related queries in the system depen-
dence graph. In Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering, ASE ’10, page 457–466, New York,
NY, USA, 2010. Association for Computing Machinery. 1

[6] Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John Penix,
and William Pugh. Using static analysis to find bugs. IEEE Software,
25(5):22–29, 2008. 1, 10

[7] Roman Ivanov. Checkstyle. https://checkstyle.sourceforge.io, 2020.
1

[8] Coverity. Coverity scan static analysis. https://scan.coverity.com,
2020. 1, 11

[9] Raoul Gabriel Urma and Alan Mycroft. Source-code queries with graph
databases—with application to programming language usage and evolution.
Science of Computer Programming, 97:127–134, January 2015. 2, 9, 16, 33

[10] Google. BigQuery. https://cloud.google.com/bigquery, 2020. 2, 41

[11] Raoul-Gabriel Urma. Wiggle. https://github.com/raoulDoc/

WiggleIndexer, 2020. 2, 9

105

https://checkstyle.sourceforge.io
https://scan.coverity.com
https://cloud.google.com/bigquery
https://github.com/raoulDoc/WiggleIndexer
https://github.com/raoulDoc/WiggleIndexer

References

[12] Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting Pro-
gram Properties from “Big Code”. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’15, pages 111–124, New York, NY, USA, 2015. 2, 14

[13] Defense Advanced Research Projects Agency. MUSE Envisions Min-
ing “Big Code” to Improve Software Reliability and Construction.
http://www.darpa.mil/news-events/2014-03-06a, 2014. 2

[14] Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. Phrase-Based
Statistical Translation of Programming Languages. In Proceedings of the
2014 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software, Onward! 2014, pages 173–184,
New York, NY, USA, 2014. ACM. 2

[15] Fabian Yamaguchi, Markus Lottmann, and Konrad Rieck. Generalized
Vulnerability Extrapolation Using Abstract Syntax Trees. In Proceedings
of the 28th Annual Computer Security Applications Conference, ACSAC
’12, pages 359–368, New York, NY, USA, 2012. ACM. 2, 14, 48

[16] Javier Escalada, Francisco Ortin, and Ted Scully. An Efficient Platform for
the Automatic Extraction of Patterns in Native Code. Scientific Program-
ming, 2017:1–16, 2017. 2, 14

[17] Francisco Ortin, Oscar Rodriguez-Prieto, Nicolas Pascual, and Miguel Gar-
cia. Heterogeneous tree structure classification to label java programmers
according to their expertise level. Future Generation Computer Systems,
105:380–394, April 2020. 2, 5, 6, 16, 46

[18] CMU SEI. Carnegie Mellon University, Software Engineering Institute, Java
coding guidelines. https://wiki.sei.cmu.edu/confluence/display/

java/Java+Coding+Guidelines, 2020. 3, 7, 16, 25, 27, 31, 69

[19] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, To-
bias Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra
Selmer, and Andrés Taylor. Cypher: An evolving query language for prop-
erty graphs. In Proceedings of the 2018 International Conference on Man-
agement of Data, SIGMOD ’18, page 1433–1445, New York, NY, USA,
2018. Association for Computing Machinery. 3, 17, 42

[20] Samy Abu-Naser. Predicting learners performance using artificial neural
networks in linear programming intelligent tutoring system. International
Journal of Artificial Intelligence & Applications, 3:65–73, 03 2012. 5, 12,
46

[21] Raoul Gabriel Urma. Programming language evolution. Technical Re-
port UCAM-CL-TR-902, University of Cambridge, Computer Laboratory,
February 2017. 9

[22] Semmle. CodeQL. https://semmle.com/codeql, 2020. 9, 34

106

https://wiki.sei.cmu.edu/confluence/display/java/Java+Coding+Guidelines
https://wiki.sei.cmu.edu/confluence/display/java/Java+Coding+Guidelines
https://semmle.com/codeql

References

[23] Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. Datalog
and emerging applications: An interactive tutorial. In Proceedings of the
2011 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’11, page 1213–1216, New York, NY, USA, 2011. Association for
Computing Machinery. 10, 42

[24] Malcolm Atkinson, David DeWitt, David Maier, François Bancilhon, Klaus
Dittrich, and Stanley Zdonik. The object-oriented database system mani-
festo. In Deductive and Object-Oriented Databases, pages 223–240. Elsevier,
1990. 10

[25] Felix Dietze, Johannes Karoff, André Calero Valdez, Martina Ziefle,
Christoph Greven, and Ulrik Schroeder. An Open-Source Object-Graph-
Mapping Framework for Neo4j and Scala: Renesca. In Francesco Bucca-
furri, Andreas Holzinger, Peter Kieseberg, A Min Tjoa, and Edgar Weippl,
editors, International Conference on Availability, Reliability, and Security
(CD-ARES), volume LNCS-9817 of Availability, Reliability, and Security
in Information Systems, pages 204–218, Salzburg, Austria, 2016. Springer
International Publishing. 10, 42

[26] Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin Chen,
and Dawn Wilkins. A comparison of a graph database and a relational
database: a data provenance perspective. In H. Conrad Cunningham, Paul
Ruth, and Nicholas A. Kraft, editors, ACM Southeast Regional Conference,
page 42. ACM, 2010. 10

[27] Nathan Hawes, Ben Barham, and Cristina Cifuentes. Frappé: Querying the
linux kernel dependency graph. In Proceedings of the Third International
Workshop on Graph Data Management Experiences and Systems, GRADES
2015, Melbourne, VIC, Australia, May 31 - June 4, 2015, pages 4:1–4:6,
2015. 10

[28] Oshini Goonetilleke, David Meibusch, and Ben Barham. Graph data man-
agement of evolving dependency graphs for multi-versioned codebases. In
2017 IEEE International Conference on Software Maintenance and Evolu-
tion, ICSME 2017, Shanghai, China, September 17-22, 2017, pages 574–
583, 2017. 10

[29] Tian Zhang, Minxue Pan, Jizhou Zhao, Yijun Yu, and Xuandong Li. An
open framework for semantic code queries on heterogeneous repositories.
In 2015 International Symposium on Theoretical Aspects of Software Engi-
neering, pages 39–46. IEEE, September 2015. 10

[30] James R. Cordy, Charles D. Halpern-Hamu, and Eric Promislow. TXL:
A rapid prototyping system for programming language dialects. Computer
Languages, 16(1):97–107, January 1991. 10

[31] Peter Membrey. The Definitive Guide to MongoDB: The NoSQL Database
for Cloud and Desktop Computing (Expert’s Voice in Open Source). Apress,
oct 2010. 10

107

References

[32] Tian Zhang, Xiaomei Zheng, Yan Zhang, Jianhua Zhao, and Xuandong Li.
A declarative approach for Java code instrumentation. Software Quality
Journal, 23(1):143–170, September 2013. 10

[33] Gamma Erich, Helm Richard, Johnson Ralph, and Vlissides John. Design
patterns: elements of reusable object-oriented software. Addison-Wesley
Professional Computing Series, 1995. 11, 18, 53

[34] G. Ann Campbell and Patroklos P. Papapetrou. SonarQube in Action.
Manning Publications, nov 2013. 11

[35] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, jul 1999. 11

[36] Pär Emanuelsson and Ulf Nilsson. A comparative study of industrial static
analysis tools. Electronic Notes in Theoretical Computer Science, 217:5–21,
2008. 11

[37] PMD. PMD Source Code Analyzer Project. https://pmd.github.io,
2020. 11

[38] Seolhwa Lee, Danial Hooshyar, Hyesung Ji, Kichun Nam, and Heui Seok
Lim. Mining biometric data to predict programmer expertise and task
difficulty. Cluster Computing, pages 1–11, 1 2017. 11

[39] S. Abu Naser, A. Ahmed, N. Al-Masri, and Y. Abu Sultan. Human com-
puter interaction design of the LP-ITS: Linear programming intelligent tu-
toring systems. International Journal of Artificial Intelligence & Applica-
tions, 2(3):60–70, 2011. 12

[40] W. S. Evans, C. W. Fraser, and F. Ma. Clone detection via structural
abstraction. In 14th Working Conference on Reverse Engineering (WCRE
2007), pages 150–159, Oct 2007. 12, 13

[41] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Comparison and
evaluation of code clone detection techniques and tools: A qualitative ap-
proach. Science of Computing Programming, 74(7):470–495, May 2009. 12

[42] J. Mayrand, C. Leblanc, and E.M. Merlo. Experiment on the automatic
detection of function clones in a software system using metrics. In Pro-
ceedings of the International Conference on Software Maintenance (ICSM),
pages 244–253, 1996. 12

[43] I.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone de-
tection using abstract syntax trees. In Proceedings of the International
Conference on Software Maintenance, pages 368–377, November 1998. 12

[44] Axivion. Project Bauhaus, 2019. 12

[45] Vera Wahler, Dietmar Seipel, Jurgen Wolff v. Gudenberg, and Gregor Fis-
cher. Clone detection in source code by frequent itemset techniques. In
Proceedings of the Fourth IEEE International Workshop in Source Code

108

https://pmd.github.io

References

Analysis and Manipulation, SCAM ’04, pages 128–135, Washington, DC,
USA, 2004. 12

[46] Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection using
abstract syntax suffix trees. In Proceedings of the 13th Working Conference
on Reverse Engineering, WCRE ’06, pages 253–262, Washington, DC, USA,
2006. 13

[47] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu.
Deckard: Scalable and accurate tree-based detection of code clones. In
Proceedings of the 29th International Conference on Software Engineering,
ICSE ’07, pages 96–105, Washington, DC, USA, 2007. 13

[48] Ahmad Taherkhani. Using decision tree classifiers in source code analysis to
recognize algorithms. The Computer Journal, 54(11):1845–1860, November
2011. 13

[49] Eric L. Seidel, Huma Sibghat, Kamalika Chaudhuri, Westley Weimer, and
Ranjit Jhala. Learning to blame: localizing novice type errors with data-
driven diagnosis. In Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications, OOPSLA ’17, pages
60:1–60:27. ACM, 2017. 13, 48, 52, 69

[50] Dor Levy and Lior Wolf. Learning to align the source code to the compiled
object code. In Doina Precup and Yee Whye Teh, editors, Proceedings
of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 2043–2051, International
Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR. 14

[51] Veselin Raychev, Martin Vechev, and Eran Yahav. Code Completion with
Statistical Language Models. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’14, pages 419–428, New York, NY, USA, 2014. 14

[52] Miltiadis Allamanis and Charles Sutton. Mining idioms from source code.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2014, pages 472–483, New York,
NY, USA, 2014. 14

[53] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review
of methods and applications, 2018. 14

[54] Mingming Lu, Dingwu Tan, Naixue Xiong, Zailiang Chen, and Haifeng
Li. Program classification using gated graph attention neural network for
online programming service, 2019. 14

[55] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Con-
ditional random fields: Probabilistic models for segmenting and labeling
sequence data. In Proceedings of the Eighteenth International Conference
on Machine Learning, ICML, pages 282–289, San Francisco, CA, USA,
2001. Morgan Kaufmann Publishers Inc. 14

109

References

[56] Trevor Cohn. Efficient inference in large conditional random fields. In
Johannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors, Eu-
ropean Conference on Machine Learning, ECML, pages 606–613, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg. 14

[57] Hendrik Blockeel, Tijn Witsenburg, and Joost N. Kok. Graphs, hyper-
graphs, and inductive logic programming. In Paolo Frasconi, Kristian Ker-
sting, and Koji Tsuda, editors, Proceedings of the 5th International Work-
shop on Mining and Learning with Graphs, MLG’ 07, pages 93–96, 2007.
14

[58] Aishwarya Sivaraman, Tianyi Zhang, Guy Van den Broeck, and Miryung
Kim. Active inductive logic programming for code search. In Proceedings
of the 41st International Conference on Software Engineering, ICSE, pages
292–303, Piscataway, NJ, USA, 2019. IEEE Press. 14, 15

[59] Qiang Zeng, Jignesh M. Patel, and David Page. Quickfoil: Scalable induc-
tive logic programming. Proceedings of the VLDB Endowment, 8(3):197–
208, 2014. 15

[60] Michael Collins and Nigel Duffy. New ranking algorithms for parsing and
tagging: Kernels over discrete structures, and the voted perceptron. In
Proceedings of the 40th Annual Meeting on Association for Computational
Linguistics, ACL ’02, pages 263–270, Stroudsburg, PA, USA, 2002. 15

[61] Deqiang Fu, Yanyan Xu, Haoran Yu, and Boyang Yang. WASTK: A
Weighted Abstract Syntax Tree Kernel method for source code plagiarism
detection. Scientific Programming, 2017:7809047:1–7809047:8, 2017. 15

[62] Konrad Rieck, Tammo Krueger, Ulf Brefeld, and Klaus-Robert Müller. Ap-
proximate tree kernels. Journal of Machine Learning Research, 11:555–580,
2010. 15

[63] Joshua Bloch. Effective Java (The Java Series). Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2 edition, 2008. 16, 20, 31, 32, 67

[64] L. Tahvildari and A. Singh. Categorization of object-oriented software met-
rics. In 2000 Canadian Conference on Electrical and Computer Engineer-
ing. Conference Proceedings. Navigating to a New Era (Cat. No.00TH8492),
pages 235–239. IEEE, 2000. 16

[65] Marko A. Rodriguez. The Gremlin graph traversal machine and language
(invited talk). In Proceedings of the 15th Symposium on Database Pro-
gramming Languages, DBPL 2015, page 1–10, New York, NY, USA, 2015.
Association for Computing Machinery. 17

[66] Neo4j. The Neo4j traversal framework. https://neo4j.com/docs/

java-reference/current/tutorial-traversal, 2020. 17

[67] Francisco Ortin, Daniel Zapico, and Juan Manuel Cueva. Design Patterns
for Teaching Type Checking in a Compiler Construction Course. IEEE
Transactions on Education, 50(3):273–283, 2007. 18, 19, 71

110

https://neo4j.com/docs/java-reference/current/tutorial-traversal
https://neo4j.com/docs/java-reference/current/tutorial-traversal

References

[68] Internet Engineering Task Force (IETF). JSON Web Tokens are an open,
industry standard RFC 7519 method for representing claims securely be-
tween two parties. https://jwt.io, 2020. 28

[69] Internet Engineering Task Force (IETF). JSON Web Token (JWT).
https://tools.ietf.org/html/rfc7519, 2020. 28

[70] Internet Engineering Task Force (IETF). Hypertext Trans-
fer Protocol (HTTP/1.1): Authentication (RFC 7235).
https://tools.ietf.org/html/rfc7235#section-4.2, 2020. 28

[71] CMU CERT. Carnegie Mellon University, CERT Division, Software En-
gineering Institute. https://www.sei.cmu.edu/about/divisions/cert,
2020. 31

[72] Robert C. Seacord and Jason A. Rafail. Secure coding standards. In Pro-
ceedings of the Static Analysis Summit, NIST Special Publication, pages
13–17, 2006. 31

[73] Oracle. Java Platform Standard Edition 7 Documentation. https://docs.
oracle.com/javase/7/docs, 2013. 31, 32, 33

[74] Klaus Havelund and Al Niessner. JPL Coding Standard, Version
1.1. https://www.havelund.com/Publications/JavaCodingStandard.

pdf, 2010. 31, 32

[75] Oscar Rodriguez-Prieto and Francisco Ortin. An efficient and scalable
platform for Java source code analysis using overlaid graph representa-
tions (support material website). http://www.reflection.uniovi.es/

bigcode/download/2020/ieee-access, 2020. 31, 33

[76] Oracle. Java Platform, Standard Edition API Specification. https://

docs.oracle.com/javase/8/docs/api/index.html, 2020. 31, 32

[77] Kirk Knoernschild. Java Design: Objects, UML, and Process. Addison-
Wesley Professional, Indianapolis, IN, USA, 2002. 32

[78] Andreas Sterbenz and Charlie Lai. Secure coding antipatterns: Avoiding
vulnerabilities. In JavaOne Conference, 2006. 32

[79] Oracle. The Java Tutorials. https://docs.oracle.com/javase/

tutorial, 2020. 32

[80] Aleksa Vukotic, Nicki Watt, Tareq Abedrabbo, Dominic Fox, and Jonas
Partner. Neo4j in Action. Manning Publications Co., USA, 1st edition,
2014. 34

[81] Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer.
QL: Object-oriented Queries on Relational Data. In Shriram Krishnamurthi
and Benjamin S. Lerner, editors, 30th European Conference on Object-
Oriented Programming (ECOOP 2016), volume 56 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 2:1–2:25, Dagstuhl, Germany,
2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. 34, 42

111

https://www.sei.cmu.edu/about/divisions/cert
https://docs.oracle.com/javase/7/docs
https://docs.oracle.com/javase/7/docs
https://www.havelund.com/Publications/JavaCodingStandard.pdf
https://www.havelund.com/Publications/JavaCodingStandard.pdf
http://www.reflection.uniovi.es/bigcode/download/2020/ieee-access
http://www.reflection.uniovi.es/bigcode/download/2020/ieee-access
https://docs.oracle.com/javase/8/docs/api/index.html
https://docs.oracle.com/javase/8/docs/api/index.html
https://docs.oracle.com/javase/tutorial
https://docs.oracle.com/javase/tutorial

References

[82] Semmle. Variant Analysis. https://semmle.com/variant-analysis,
2020. 34

[83] CUP research group. GitHub Java corpus. http://groups.inf.ed.ac.

uk/cup/javaGithub, 2020. 34

[84] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton.
Learning natural coding conventions. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineer-
ing, FSE 2014, page 281–293, New York, NY, USA, 2014. Association for
Computing Machinery. 34

[85] Jaroslav Fowkes and Charles Sutton. Parameter-free probabilistic api min-
ing across github. In Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, FSE 2016, page
254–265, New York, NY, USA, 2016. Association for Computing Machinery.
34

[86] Mathieu Goeminne and Tom Mens. Towards a survival analysis of database
framework usage in Java projects. In Proceedings of the 2015 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME),
ICSME ’15, page 551–555, USA, 2015. IEEE Computer Society. 34

[87] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous
Java performance evaluation. ACM SIGPLAN Notices, 42(10):57–76, 2007.
34, 35

[88] David J. Lilja. Measuring computer performance: a practitioner’s guide.
Cambridge University Press, 2005. 35

[89] Francisco Ortin, Miguel A. Labrador, and Jose M. Redondo. A hybrid class-
and prototype-based object model to support language-neutral structural
intercession. Information and Software Technology, 44(1):199–219, feb 2014.
35

[90] Microsoft. Windows management instrumentation. http://msdn.

microsoft.com/en-us/library/windows/desktop/aa394582(v=vs.85)

.aspx, 2015. 36

[91] GQL. Graph Query Language, GQL Standard.
https://www.gqlstandards.org, 2020. 42

[92] Semmle. LGTM, continuous security analysis. https://lgtm.com, 2020.
44

[93] Francisco Ortin, Miguel A. Labrador, and Jose M. Redondo. A hybrid class-
and prototype-based object model to support language-neutral structural
intercession. Information and Software Technology, 56(2):199–219, Febru-
ary 2014. 44

112

https://semmle.com/variant-analysis
http://groups.inf.ed.ac.uk/cup/javaGithub
http://groups.inf.ed.ac.uk/cup/javaGithub
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394582(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394582(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394582(v=vs.85).aspx
https://lgtm.com

References

[94] Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig.
Understanding the use of lambda expressions in java. Proceedings of the
ACM on Programming Languages, 1(OOPSLA):85:1–85:31, October 2017.
46

[95] Carnegie Mellon University, Software Engineering Institute. Java cod-
ing guidelines. https://wiki.sei.cmu.edu/confluence/display/java/

Java+Coding+Guidelines, 2019. 46

[96] HongYun Cai, Vincent Wenchen Zheng, and Kevin Chen-Chuan Chang.
A comprehensive survey of graph embedding: Problems, techniques, and
applications. IEEE Transactions on Knowledge and Data Engineering,
30:1616–1637, 2018. 48, 68

[97] L. Rokach and O. Maimon. Top-down induction of decision trees classifiers -
a survey. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
Part C, 35(4):476–487, November 2005. 48

[98] Terence Parr. The Definitive ANTLR 4 Reference. The Pragmatic Book-
shelf, 2013. 52

[99] Alex A. Freitas. On rule interestingness measures. In Roger Miles, Michael
Moulton, and Max Bramer, editors, Research and Development in Expert
Systems XV, pages 147–158, London, 1999. Springer London. 54

[100] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984. 57

[101] Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition.
Academic Press, Inc., Orlando, FL, USA, 4th edition, 2008. 57

[102] Zuzana Reitermanová. Data splitting. In Proceedings of the 19th Annual
Conference of Doctoral Student, WDS, pages 31–26, 2010. 58, 59

[103] Francisco Ortin. Heterogeneous tree structure classification to label
Java programmers according to their expertise level (support material
website). http://www.reflection.uniovi.es/bigcode/download/2019/
fgcs, 2019. 61, 62

[104] Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabil-
ities with supervised learning. In Proceedings of the 22Nd International
Conference on Machine Learning, ICML ’05, pages 625–632, New York,
NY, USA, 2005. 62

[105] Jacob Bellamy-McIntyre. Modeling and querying versioned source code in
rdf. In Aldo Gangemi, Anna Lisa Gentile, Andrea Giovanni Nuzzolese,
Sebastian Rudolph, Maria Maleshkova, Heiko Paulheim, Jeff Z Pan, and
Mehwish Alam, editors, The Semantic Web: ESWC 2018 Satellite Events,
pages 251–261, Cham, 2018. Springer International Publishing. 68

113

https://wiki.sei.cmu.edu/confluence/display/java/Java+Coding+Guidelines
https://wiki.sei.cmu.edu/confluence/display/java/Java+Coding+Guidelines
http://www.reflection.uniovi.es/bigcode/download/2019/fgcs
http://www.reflection.uniovi.es/bigcode/download/2019/fgcs

References

[106] Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sut-
ton. A survey of machine learning for big code and naturalness. ACM
Computing Surveys, 51(4):81:1–81:37, July 2018. 68

[107] Sašo Džeroski. Multi-relational data mining: An introduction. SIGKDD
Explorations Newsletter, 5(1):1–16, July 2003. 68

[108] Takashi Washio and Hiroshi Motoda. State of the art of graph-based data
mining. SIGKDD Explorations, 5(1):59–68, 2003. 68

[109] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings
of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 32–41, 1996. 69

[110] John Whaley and Martin Rinard. Compositional pointer and escape anal-
ysis for Java programs. In Proceedings of the 14th ACM SIGPLAN confer-
ence on Object-oriented programming, systems, languages, and applications,
pages 187–206, 1999. 69

[111] Alexandru Sălcianu and Martin Rinard. Purity and side effect analysis for
Java programs. In International Workshop on Verification, Model Checking,
and Abstract Interpretation, pages 199–215. Springer, 2005. 69

[112] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix:
Fixing common C language errors by deep learning. In Thirty-First AAAI
Conference on Artificial Intelligence, 2017. 69

[113] Miwa Sasaki, Shinsuke Matsumoto, and Shinji Kusumoto. Integrating
source code search into git client for effective retrieving of change history.
In Proceedings of the Workshop on Mining and Analyzing Interaction His-
tories, MAINT, page 1–5, 2018. 69

[114] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu.
A large scale study of programming languages and code quality in GitHub.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2014, pages 155–165, New York,
NY, USA, 2014. 70

[115] Oscar Rodriguez-Prieto and Francisco Ortin. ProgQuery website. https:

//github.com/OscarRodriguezPrieto/ProgQuery, 2020. 71

[116] Oscar Rodriguez-Prieto, Alan Mycroft, and Francisco Ortin. An efficient
and scalable platform for Java source code analysis using overlaid graph
representations. (to be published), 2020. 71, 72

114

https://github.com/OscarRodriguezPrieto/ProgQuery
https://github.com/OscarRodriguezPrieto/ProgQuery

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Motivating examples
	1.2.1 Static program analysis
	1.2.2 Source code classification

	1.3 Contributions
	1.4 Structure of the document

	2 Related Work
	2.1 Source code query tools
	2.2 Ad hoc static analysis tools
	2.3 Classification of programmers by their expertise level
	2.4 Clone detection
	2.5 Other scenarios of syntactic classifiers
	2.6 Structured methods

	3 ProgQuery Infrastructure
	3.1 Architecture
	3.2 Java compiler plug-in
	3.3 Overlaid program representations
	3.3.1 Abstract Syntax Tree (AST)
	3.3.2 Control Flow Graph (CFG)
	3.3.3 Program Dependency Graph (PDG)
	3.3.4 Call Graph
	3.3.5 Type Graph
	3.3.6 Class Dependency Graph (CDG)
	3.3.7 Package Graph

	4 Web Prototype
	4.1 Architecture
	4.2 Web application
	4.2.1 Programs
	4.2.2 Analyses
	4.2.3 Results
	4.2.4 Users

	4.3 Web API
	4.3.1 Programs API
	4.3.2 Analyses API
	4.3.3 Results API
	4.3.4 Users API

	5 Use Case Scenario 1: Static Program Analysis
	5.1 Static analyses
	5.2 Research questions
	5.3 Methodology
	5.3.1 Systems measured
	5.3.2 Programs used
	5.3.3 Data analysis
	5.3.4 Experimental environment

	5.4 Evaluation
	5.4.1 Analysis time
	5.4.1.1 Increasing program sizes
	5.4.1.2 Increasing complexity of analyses
	5.4.1.3 Limit values

	5.4.2 Program analysis expressiveness
	5.4.3 Memory consumption
	5.4.4 Insertion time

	6 Use Case Scenario 2: Programmer Classification
	6.1 Requirements
	6.1.1 Different levels of syntax constructs
	6.1.2 Heterogeneous compound structures
	6.1.3 Interpretable white-box models
	6.1.4 Scalability
	6.1.5 Models from trees

	6.2 Objective
	6.3 Methodology
	6.3.1 Homogeneous datasets and models construction
	6.3.2 Homogeneous syntax pattern extraction
	6.3.3 Syntax pattern selection and simplification
	6.3.4 Heterogeneous dataset and model construction
	6.3.5 Heterogeneous syntax pattern extraction

	6.4 Evaluation
	6.4.1 Experimental data
	6.4.2 Experimental environment
	6.4.3 Syntax pattern selection
	6.4.4 Heterogeneous AST classification
	6.4.5 Heterogeneous syntax pattern extraction
	6.4.6 Scoring the expertise level of programmers
	6.4.7 Execution time of the proposed method

	7 Conclusions
	8 Future Work
	8.1 Implementation of analyses not provided by other tools
	8.2 Automatic insertion of open source code
	8.3 Semantic web contents from open-source repositories
	8.4 Predictive models with semantic features
	8.5 Graph structure mining and classification
	8.6 New programming languages and representations
	8.7 Automatic error fixing
	8.8 Project information and evolution

	A Graph Representations used in the Design of ProgQuery
	A.1 Nodes
	A.2 Abstract Syntax Tree
	A.2.1 Nodes
	A.2.2 Relationships
	A.2.3 Properties

	A.3 Control Flow Graph
	A.3.1 Nodes
	A.3.2 Relationships
	A.3.3 Properties

	A.4 Call Graph
	A.4.1 Nodes
	A.4.2 Relationships
	A.4.3 Properties

	A.5 Type Graph
	A.5.1 Nodes
	A.5.2 Relationships
	A.5.3 Properties

	A.6 Program Dependency Graph
	A.6.1 Nodes
	A.6.2 Relationships
	A.6.3 Properties

	A.7 Class Dependency Graph
	A.8 Package Graph
	A.8.1 Nodes
	A.8.2 Relationships
	A.8.3 Properties

	B Analyses
	B.1 MET53-J
	B.2 MET55-J
	B.3 SEC56-J
	B.4 DCL56-J
	B.5 MET50-J
	B.6 DCL60-J
	B.7 OBJ54-J
	B.8 OBJ50-J
	B.9 ERR54-J
	B.10 MET52-J
	B.11 DCL53-J
	B.12 OBJ56-J
	B.13 NUM50-J

	C Features of the homogeneous datasets
	D Publications
	References

