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Abstract

Dynamically typed languages have turned out to be suitable for dif-
ferent software development scenarios such as Web engineering, rapid
prototyping, and the construction of applications where runtime adapt-
ability is an important issue. In contrast, statically typed languages
have undeniable advantages such as early type error detection and
more opportunities for compiler optimizations. Since both approaches
offer different benefits, hybrid statically and dynamically typed pro-
gramming languages have emerged, and some statically typed lan-
guages have also incorporated dynamic typing capabilities. However,
these languages do not perform static type inference on dynamically
typed code, lacking the advantages provided for statically typed code.

This PhD dissertation presents StaDyn, a hybrid static and dynamic
typing language that performs static type inference and type checking
of both statically and dynamically typed references. StaDyn permits
the straightforward development of adaptable software and rapid pro-
totyping, offering early type error detection, improved runtime perfor-
mance, and direct interoperation between dynamically and statically
typed code. The programmer indicates whether high flexibility is re-
quired (dynamic typing) or stronger type checking (static) is preferred.
It is also possible to combine both approaches, making parts of an ap-
plication more flexible, whereas the rest of the program maintains its
robustness and runtime performance.

The key features of the proposed hybrid static and dynamic type
system are a new interpretation of union and intersection types, the
combination of syntax-directed and constraint-based type-checking,
type inference of implicitly-typed dynamic and static references, and
flow-sensitive type-checking. The type system has been implemented
as an extension of a real full-fledged programming language such as
C# (StaDyn), obtaining the benefits of combining the .Net Frame-
work and the proposed type system.

The runtime performance and memory consumption of StaDyn have
been compared with the most widespread hybrid dynamic and static
typing programming languages for the .Net Framework 4. The as-
sessment has been done with an ample set of benchmarks. StaDyn has
shown the best performance in all the programs that use at least one
dynamic reference, being 150% and 500% faster executing dynamic
and hybrid typing code, respectively. When no dynamic reference is
used, the only language that performs better than StaDyn (2.5%) is
the C# 4.0 production compiler, due to its static optimizations. Be-



sides, StaDyn has showed the lowest memory consumption in every
scenario.

This dissertation presents how the static type information gathered
for dynamically typed references can be used to effectively improve
the runtime performance and robustness of hybrid static and dynamic
typing languages. Unlike the rest of the analyzed languages, StaDyn
continues collecting type information of dynamically typed code. The
type information inferred by the compiler is used to detect type errors
at compile time when dynamic references are used. Moreover, this
information is also used to optimize the generated code without any
runtime memory cost.
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Resumen

Los lenguajes con comprobación dinámica de tipos son utilizados
comúnmente en diversos escenarios dentro del desarrollo software, ta-
les como la ingenieŕıa Web, el desarrollo rápido de prototipos y la
implementación de aquellas aplicaciones para las que la adaptabilidad
dinámica sea un requisito importante. Por otro lado, los lenguajes con
comprobación estática de tipos ofrecen innegables ventajas como la
detección temprana de errores y un mayor número de optimizaciones
por parte del compilador. Dado que ambos enfoques ofrecen diferentes
beneficios, en los últimos años han surgido lenguajes de programación
con sistemas de tipos h́ıbridos, estáticos y dinámicos. Del mismo mo-
do, algunos lenguajes con comprobación estática de tipos también
han incorporado la posibilidad de incluir tipos dinámicos en su sis-
tema de tipos. Sin embargo, estos lenguajes no realizan inferencia de
tipos alguna en tiempo de compilación sobre código con comprobación
dinámica de tipos, perdiendo aśı parte de su robustez y rendimiento.

En esta tesis presentamos StaDyn, un lenguaje con comprobación de
tipos h́ıbrida que realiza inferencia de tipos tanto en código declara-
do estático como dinámico. StaDyn facilita el desarrollo de softwa-
re dinámicamente adaptable y la construcción rápida de prototipos,
ofreciendo un mejor rendimiento y detección temprana de errores que
los lenguajes con tipado dinámico. Adicionalmente, permite la inter-
operabilidad entre código con comprobación dinámica y estática de
tipos, compartiendo un mismo sistema de tipos. El programador in-
dica cuándo requiere alta flexibilidad (tipado dinámico) o la robustez
de un sistema estático de tipos. También es posible combinar ambos
enfoques haciendo partes de la aplicación más flexibles, mientras que
el resto del programa mantiene su robustez y rendimiento en tiempo
de ejecución.

Las principales caracteŕısticas del sistema de tipos hibrido propues-
to son una nueva interpretación de los tipos unión e intersección, la
combinación de sistemas de tipos dirigidos por sintaxis y basados en
restricciones, inferencia de tipos concretos frente a abstractos, y un
sistema de tipos sensible al contexto. El sistema de tipos ha sido im-
plementado como una extensión de un lenguaje de programación real
como C#, obteniendo los beneficios de incorporar una investigación
teórica a una plataforma real como el .Net Framework.

Hemos comparado el rendimiento en tiempo de ejecución y el consumo
de memoria de StaDyn con los lenguajes h́ıbridos existentes sobre
el .Net Framework. La evaluación ha sido realizada con un amplio



conjunto de benchmarks. StaDyn ha mostrado el mejor rendimiento
en todos los programas que usan al menos una referencia dinámica,
siendo 150 % más rápido ejecutando código dinámico y un 500 % en
código hibrido.

Hemos visto cómo la obtención de información de tipos de referencias
dinámicamente tipadas puede ser utilizada para mejorar de forma
efectiva el rendimiento y robustez de los lenguajes de programación
h́ıbridos. Al contrario que el resto de lenguajes analizados, StaDyn
continúa obteniendo información de tipos del código declarado como
dinámico. La información inferida por el compilador es usada para
detectar errores de tipo en tiempo de compilación, incluso sobre refe-
rencias dinámicas. Adicionalmente, esta información también es usada
para optimizar significativamente el código generado, sin representar
ningún coste de memoria en tiempo de ejecución.

Palabras Clave

StaDyn, Sistemas de Tipos Hı́bridos Estáticos y Dinámi-
cos, Lenguajes Dinámicos, Tipos Unión, Tipos Intersección,
Rendimiento, Robustez, .Net



Acknowledgements

This work has been partially funded by Microsoft Research, under the
project entitled Extending dynamic features of the SSCLI, awarded in
the Phoenix and SSCLI, Compilation and Managed Execution Request
for Proposals. It has been also funded by the Department of Science
and Technology (Spain) under the National Program for Research,
Development and Innovation with two projects: Improving Perfor-
mance and Robustness of Dynamic Languages to develop Efficient,
Scalable and Reliable Software (TIN2008-00276) and Obtaining Adapt-
able, Robust and Efficient Software by including Structural Reflection
to Statically Typed Programming Languages (TIN2011-25978).



vi



Contents

Contents vii

List of Figures ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Structure of the Document . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 5
2.1 Hybrid Programming Language Implementations . . . . . . . . . 5
2.2 Hybrid Static and Dynamic Type Systems . . . . . . . . . . . . . 7
2.3 Static Typing for Dynamically Typed Languages . . . . . . . . . . 8

3 Overview of the StaDyn Programming Language 11
3.1 Static and Dynamic Typing . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Statically Typed Languages . . . . . . . . . . . . . . . . . 11
3.1.2 Dynamically Typed Languages . . . . . . . . . . . . . . . 12
3.1.3 Supporting both Approaches . . . . . . . . . . . . . . . . . 12

3.2 The StaDyn Programming Language . . . . . . . . . . . . . . . . 13
3.2.1 Multiple Types in the Same Scope . . . . . . . . . . . . . 14
3.2.2 Duck Typing . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Separation of the Dynamism Concern . . . . . . . . . . . . 17
3.2.4 Implicitly Typed Parameters . . . . . . . . . . . . . . . . . 18
3.2.5 Implicitly Typed Attributes . . . . . . . . . . . . . . . . . 19
3.2.6 Interaction between Static and Dynamic Types . . . . . . 20
3.2.7 Alias Analysis for Concrete Type Evolution . . . . . . . . 21

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 The Hybrid Static and Dynamic Type System 23
4.1 Informal Specification of the StaDyn Core . . . . . . . . . . . . . 23
4.2 Abstract Syntax of the StaDyn core . . . . . . . . . . . . . . . . . 25
4.3 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.3 Basic Expressions . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.4 Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.5 Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vii



Contents

4.3.6 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.7 Function Invocation . . . . . . . . . . . . . . . . . . . . . . 39
4.3.8 Converting Implicit into Explicit Types . . . . . . . . . . . 40

5 Erasure Semantics 41
5.1 Type Erasure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Anonymous Classes . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Translation of Programs . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 Basic Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.6 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.7 Field Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.8 Array Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Evaluation 57
6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Micro-benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2.1 Memory Consumption . . . . . . . . . . . . . . . . . . . . 62
6.3 Dynamically Typed Code . . . . . . . . . . . . . . . . . . . . . . 63

6.3.1 Memory Consumption . . . . . . . . . . . . . . . . . . . . 67
6.4 Hybrid Dynamic and Static Typing Code . . . . . . . . . . . . . . 68

6.4.1 Memory Consumption . . . . . . . . . . . . . . . . . . . . 71
6.5 Explicitly Typed Code . . . . . . . . . . . . . . . . . . . . . . . . 72

6.5.1 Memory Consumption . . . . . . . . . . . . . . . . . . . . 74
6.6 Influence of Dynamic Typing on Runtime Performance . . . . . . 74

7 Conclusions 77
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A Syntax of the StaDyn Programming Language 83
A.1 Syntax Specification . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.2 Lexical Specification . . . . . . . . . . . . . . . . . . . . . . . . . 87

B Runtime Performance Tables 89
B.1 Micro-benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
B.2 Dynamically Typed Code . . . . . . . . . . . . . . . . . . . . . . 90
B.3 Hybrid Dynamic and Static Typing Code . . . . . . . . . . . . . . 92
B.4 Explicitly Typed Benchmarks . . . . . . . . . . . . . . . . . . . . 93

C Memory Consumption Tables 95
C.1 Micro-benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
C.2 Dynamically Typed Code . . . . . . . . . . . . . . . . . . . . . . 96
C.3 Hybrid Dynamic and Static Typing Code . . . . . . . . . . . . . . 98
C.4 Explicitly Typed Benchmarks . . . . . . . . . . . . . . . . . . . . 99

D Publications 101

References 103

viii



List of Figures

3.1 Program execution of statically typed languages. . . . . . . . . . . 12
3.2 Not compilable C# program that would not produce any runtime

error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Program execution of dynamically typed languages. . . . . . . . . 13
3.4 Compilable dynamically typed C# program that generates run-

time type errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 A reference with different types in the same scope. . . . . . . . . . 15
3.6 Corresponding program after the SSA transformation. . . . . . . . 15
3.7 Static duck typing. . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.8 Static var reference. . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9 Implicitly typed parameters. . . . . . . . . . . . . . . . . . . . . . 19
3.10 Implicitly typed attributes. . . . . . . . . . . . . . . . . . . . . . . 20
3.11 Dynamic and static code interoperation. . . . . . . . . . . . . . . 21
3.12 Alias analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Example coded in the minimal core of StaDyn. . . . . . . . . . . . 24
4.2 Abstract Syntax of the StaDyn minimal core. . . . . . . . . . . . 26
4.3 Example concrete StaDyn core program. . . . . . . . . . . . . . . 28
4.4 Program, declarations and functions. . . . . . . . . . . . . . . . . 29
4.5 Inference rules for Ω. . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.6 Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7 Basic expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.8 Example use of arrays in StaDyn core. . . . . . . . . . . . . . . . 32
4.9 Type variable binding substitution. . . . . . . . . . . . . . . . . . 33
4.10 Subtyping and type equivalence. . . . . . . . . . . . . . . . . . . . 34
4.11 Example use of dynamic and static references in StaDyn core. . . 35
4.12 Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.13 Statements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.14 The join algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.15 Comparison and union operations. . . . . . . . . . . . . . . . . . . 39
4.16 Function invocation. . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Example translation from StaDyn core to C#. . . . . . . . . . . . 42
5.2 Type erasure definition. . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 Execution time of the micro-benchmark. . . . . . . . . . . . . . . 61
6.2 Memory consumption of the micro-benchmark. . . . . . . . . . . . 62
6.3 Execution time of the Pybench benchmark. . . . . . . . . . . . . . 64

ix



List of Figures

6.4 Execution time of the Java Grande benchmarks using dynamic
typing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.5 Execution time of the dynamically typed benchmarks. . . . . . . . 66
6.6 Memory consumption of the dynamically typed benchmarks. . . . 67
6.7 Execution time of the Java Grande benchmarks using hybrid typing. 68
6.8 Execution time of the hybrid static and dynamic typing benchmarks. 70
6.9 Memory consumption of the hybrid static and dynamic typing

benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.10 Execution time of the explicitly typed benchmarks. . . . . . . . . 73
6.11 Memory consumption of the explicitly typed benchmarks. . . . . . 73
6.12 Influence of dynamic typing on runtime performance. . . . . . . . 74

x



Chapter 1

Introduction

1.1 Motivation

Dynamic languages have recently turned out to be suitable for specific scenarios
such as Web development, rapid prototyping, developing systems that interact
with data that change unpredictably, dynamic aspect-oriented programming, and
any kind of runtime adaptable or adaptive software. The main benefit of these
languages is the simplicity they offer to model the dynamicity that is sometimes
required to build high context-dependent software. Common features of dynamic
languages are meta-programming, reflection, mobility, and dynamic reconfigura-
tion and distribution.

Taking Web engineering as an example, Ruby [1] has been successfully used to-
gether with the Ruby on Rails framework to create database-backed Web applica-
tions [2]. This framework has confirmed the simplicity of implementing the DRY
(Don’t Repeat Yourself) [3] and the Convention over Configuration [2] principles
with this kind of languages. Nowadays, JavaScript [4] is being widely employed to
create interactive Web applications with AJAX (Asynchronous JavaScript And
XML) [5], while PHP (PHP Hypertext Preprocessor) is one of the most pop-
ular languages for developing Web-based views. Python [6] is used for many
different purposes; two well-known examples are the Zope application server [7]
(a framework for building content management systems, intranets and custom
applications) and the Django Web application framework.

Due to the recent success of dynamic languages, statically typed languages
(such as Java and C#) are gradually incorporating more dynamic features into
their platforms. Taking Java as an example, the reflection API became part
of the Java platform with its release 1.1. This API offers introspection ser-
vices to examine the structures of objects and classes at runtime, plus object
creation and method invocation –involving a substantial performance overhead.
The dynamic proxy class API was added to Java 1.3. It allows defining a class
at runtime that implements any interface, funneling all its method calls to an
InvocationHandler. The Java instrument package (included in Java SE 1.5)
provides services that allow Java agents to instrument programs running on the

1



Chapter 1. Introduction

JVM. This package has been used to implement JAsCo, a fast dynamic AOP
platform [8]. Together with other tools such as BCEL [9] and Javassist [10],
these agents have also been successfully used in the implementation of applica-
tion servers such as Spring Java and JBoss, obtaining good runtime performance.
The Java Scripting API added to Java 1.6 permits dynamic scripting programs
to be executed from, and have access to, the Java platform [11]. Finally, the
Java Specification Request 292 [12] has just been incorporated to the Java 1.7
Standard Edition. It adds the new invokedynamic opcode to the Java Virtual
Machine (JVM) and the java.lang.invoke package to the platform [12], making
it easier to implement dynamically typed languages in the Java virtual machine.
Its main advantage is a user-defined linkage mechanism to postpone method call-
sites resolution until runtime.

This trend has also been observed in the .Net platform. The Dynamic Lan-
guage Runtime (DLR) has been included as part of the .Net framework 4.0 [13].
The DLR adds to the .Net platform a new layer that provides services to facili-
tate the implementation of dynamic languages over the platform [14]. Moreover,
Microsoft has included the new dynamic type to C# 4.0, allowing the program-
mer to write dynamically typed code in a statically typed programming language.
With this new characteristic, C# 4.0 offers direct access to code in IronPython,
IronRuby and the JavaScript code in Silverlight, making use of the DLR services.

The great flexibility of dynamic languages is, however, counteracted by the
limitations derived by the lack of static type checking. This deficiency implies
two major drawbacks: no early detection of type errors, and few opportunities
to perform runtime performance optimizations. Static typing offers the program-
mer the detection of type errors at compile time, making possible to fix them
immediately rather than discovering them at runtime –when the programmer’s
efforts might be aimed at some other task, or even after the program has been de-
ployed [15]. Moreover, since runtime adaptability of dynamic languages is mostly
implemented with dynamic type systems, runtime type inspection and checking
commonly involves a significant performance penalty.

Since both approximations offer different benefits, there have been former
works on providing both typing approaches in the same language (see Chap-
ter 2). Meijer and Drayton maintained that instead of providing programmers
with a black or white choice between static or dynamic typing, it could be use-
ful to strive for softer type systems [16]. Static typing allows earlier detection
of programming mistakes, better documentation, more opportunities for com-
piler optimizations, and increased runtime performance. Dynamic typing lan-
guages provide a solution to a kind of computational incompleteness inherent
to statically-typed languages, offering, for example, storage of persistent data,
inter-process communication, dynamic program behavior customization, or gen-
erative programming [17]. Therefore, there are situations in programming when
one would like to use dynamic types even in the presence of advanced static
type systems [18]. That is, static typing where possible, dynamic typing when
needed [16].

This dissertation is aimed at breaking the programmers’ black or white choice

2
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between static and dynamic typing. We propose a programming language, called
StaDyn [19], that supports both static and dynamic typing. This programming
language combines the robustness and efficiency of a statically typed language
with the flexibility and adaptiveness of dynamic typing. The programmer specifies
those parts of the code where dynamic adaptability is required and those where
common static typing rules should be applied. This separation facilitates turning
rapidly developed prototypes into a final robust and efficient program. It is
also possible to combine both approaches, making parts of an application more
flexible, whereas the rest of the program maintains its robustness and runtime
performance.

1.2 Contributions

These are the major contributions of this PhD dissertation:

1. A hybrid static and dynamic type system. There are previous works aimed
at supporting static and dynamic typing in the very same language (§ 2.2),
providing interoperability between these two kinds of code. We propose a
new interpretation of union and intersection types (Chapter 4) to gather
more type information than the existing approaches. This type information
is used to provide better interoperation between statically and dynamically
typed code.

2. Compile-time error detection of dynamically typed code. Existing ap-
proaches of hybrid static and dynamic typing languages postpone all the
type checking of dynamically typed code until runtime. Our compiler gath-
ers type information that allows detecting many type errors at compile time,
even when dynamic references are used.

3. Runtime performance improvement. The type information gathered by the
compiler can also be used to optimize the generated code. In particular,
dynamic type checking is reduced and a consequent runtime performance
improvement is achieved.

4. Separation of the dynamism concern. References are not explicitly declared
as static or dynamic. They follow the same syntax and their dynamism is
separated and controlled by the IDE. Consequently, the compiler provides
different modes of compilation, processing the source language in different
ways depending on the requirements of the application. With this approach,
rapidly developed prototypes can be easily converted into robust produc-
tion applications, minimizing the changes in the source code. Similarly, it
facilitates making parts of an application more flexible, whereas the rest of
the program maintains its robustness and runtime performance.

5. Implementation of a full-fledged programming language. The proposed type
system is included in a real full-fledged programming language such as C#.
C# has been extended with our type system, obtaining all the benefits of
combining the proposed type system and the .Net Framework.

3
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6. Evaluation of runtime performance and memory consumption of hybrid lan-
guages. A comparison of all the existing hybrid static and dynamic typing
languages implemented for the .Net platform is presented (Chapter 6).
This comparison empirically shows the benefits and drawbacks our the pro-
posed system.

1.3 Structure of the Document

This dissertation is structured as follows. The next chapter presents related work.
Chapter 3 provides an overview of the StaDyn programming language. Chapter 4
formally describes the abstract syntax (§ 4.2) and the type system (§ 4.3) of the
StaDyn core. Chapter 5 presents its erasure semantics by translating it into C#.
An evaluation of runtime performance and memory consumption is detailed in
Chapter 6. Chapter 7 presents the conclusions and future work.

Appendix A presents the lexical and syntax specifications, Appendix B and
Appendix C contain the complete tables of execution times and memory con-
sumptions, and Appendix D presents the list of publications derived from this
PhD.

4
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Related Work

Since both dynamic and static typing offer important benefits, there have been
previous approaches aimed at obtaining the advantages of both, following the
philosophy of static typing where possible, dynamic typing when needed [16]. The
existing language implementations are first described, and then the theoretical
research. Finally, existing approaches to perform static typing in dynamically
typed languages are also described.

2.1 Hybrid Programming Language Implemen-

tations

Strongtalk was one of the first programming language implementation that in-
cluded both dynamic and static typing in the same programming language.
Strongtalk is a major re-thinking of the Smalltalk-80 programming language [20].
It retains the basic Smalltalk syntax and semantics [21], but a type system
is added to provide more reliability and a better runtime performance. The
Strongtalk type system is completely optional, following the pluggable type sys-
tem approach [22]. The programmer selects the robustness and efficiency of a
static type system, or the adaptiveness and expressiveness of dynamically typed
code. This assumes that it is the programmer’s responsibility to ensure that types
are sound in regard to dynamic behavior. Type checking is performed at compile-
time, but it does not guarantee an execution without type errors. Although, its
type system is not completely safe, it has been used to perform performance
optimizations, implying a significant improvement.

Dylan is a high-level programming language, designed to allow efficient com-
pilation of features commonly associated with dynamic languages [23]. Dylan
permits both explicit and implicit variable declaration. It also supports two
compilation scenarios: production and interactive. In the interactive mode, all
the types are ignored and no static type checking is performed. This behavior is
similar to the one offered by dynamic languages. When the production configura-
tion is selected, explicitly typed variables are checked using a static type system.
However, types of generic references (references without type declaration) are not
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inferred at compile time –they are always checked at runtime. The two modes of
compilation propsed in Dylan are aimed at converting rapidly developed proto-
types into robust and efficient production applications, reducing the changes to
be done in the source code.

Boo is an object-oriented programming language that is both statically and
dynamically typed, with a Python inspired syntax [24]. In Boo, references may
be declared without specifying its type and the compiler performs type inference.
Opposite to Python, references could only have one unique type in the same scope.
In Boo, fields and parameters could not be declared without specifying its type.
Boo offers dynamic type inference with a special type called duck. Any operation
could be performed over a duck reference –no static typing is performed. Any
dynamic reference is converted into a static one without a cast. The Boo compiler
also provides a ducky option that interprets the Object type as if it was duck.
This ducky option allows the programmer to test out the code more quickly, and
makes coding in Boo feel much more like coding in a dynamic language. So, when
the programmer has tested the application, he or she may wish to turn the ducky
option back off and add various type declarations and casts.

Visual Basic for .Net also incorporates both dynamic and static typing [25].
Its dynamic type system supports duck typing, but no static type inference is
performed over dynamic references. Every type can be converted to a dynamic
one, and vice versa. Therefore, all the type checking of dynamic references is
performed at runtime. At the same time, dynamic references do not produce
any type error at compile time. Visual Basic for .Net does not separate the
dynamism concern: it forces the programmer to explicitly state in the source
code which references are static and which ones are dynamic. Dynamic references
are declared using the Dim reserved word and the variable identifier; As and the
variable type are not stated. Function parameters and class fields can also be
declared as dynamic.

C# includes in its version 4.0 the support of dynamically typed objects [26].
A new dynamic type has been added to the programming language. The compiler
performs no static type checking over the dynamic references, postponing all the
type verifications at runtime. However, the typing rules defined by the language
are checked at runtime (e.g., method overload [27]) [28]. This new feature is sup-
ported by the Dynamic Language Runtime (DLR) [14], a new layer over the CLI
(Common Language Infrastructure) that provides language services for several
different dynamic languages [13]. The main objective of the new dynamic type
is to offer direct access to dynamically typed code in IronPython, IronRuby and
the JavaScript code in Silverlight.

Objective-C is a general-purpose object-oriented extension of the C program-
ming language [29]. It is commonly compiled into a native format, without re-
quiring any virtual machine. Objective-C has recently grown in popularity due
to its relation with the development of iOS and OS X applications. According
to the Tiobe raking [30], in March 2013 Objective-C was the 3rd most used pro-
gramming language; whereas it was the 45th in March 2008. One of the main
differences with C++ is that Objective-C is hybrid statically and dynamically
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typed. Method execution is based on message passing (between [ and ]) that
performs no static type checking (duck typing). If the object to which the message
is directed does not provide a suitable method, a NSInvalidArgumentException

is raised. Besides, Objective-C also provides an id type to postpone the static
type checking until runtime.

Cobra is another hybrid static and dynamic typing programming language for
the .Net platform [31]. The language is compiled to .Net assemblies. Although
it is object oriented, it also supports functional features such as lambda expres-
sions, closures, list comprehensions and generators. It provides first class support
of unit tests and contracts. The way Cobra provides dynamic typing is similar
to C# 4.0, offering a new dynamic type. Any expression is implicitly coerced to
dynamic type, and the other way round.

The Fantom programming language generates both JVM and .Net code, pro-
viding a hybrid dynamic and static type system [32]. Instead of adding a new
type, dynamic typing is provided with the -> dynamic invocation operator. Un-
like the dot operator, the dynamic invocation operator does not perform compile-
time checking. In order to obtain duck typing over language operators, operators
can be invoked as if they were methods. For instance, to evaluate a+b with dy-
namic typing, the Fantom programmer writes a->plus(b). The returned type is
the object top type (Obj in Fantom), so dynamically typed expressions are not
implicitly converted into statically typed ones.

2.2 Hybrid Static and Dynamic Type Systems

One of the first works aimed at formalizing hybrid static and dynamic type system
was Soft Typing [33]. Its main objective is to combine the advantages of static
typing with the flexibility of dynamic typing. The soft type system is defined for
a functional core of both ML and Scheme. Soft typing does not control which
parts in a program are statically checked, and the static type information is not
used to optimize the generated code either. They developed an algorithm as an
extension of Hindley-Milner unification-based typing [34], including union types
and recursive types.

The approach proposed by Abadi, Cardelli, Pierce and Plotkin [17] was the
first one to add a new Dynamic type in order to support dynamic typing in a
statically typed language. They extended a typed lambda calculus with this new
type. Dynamic values are pairs of a value v and a type tag T , where v has the
type denoted by T . The type tag T is used in two conversion operations: dynamic
to package v and T , and typecase to inspect the T type tag given a Dynamic

expression. The resulting language results in a a verbose code deeply dependent
on its dynamism.

The works of Quasi-Static Typing [35], Hybrid Typing [36] and Gradual Typ-
ing [37] perform implicit conversions between dynamic and static code. Quasi-
static and hybrid typing modify the subtyping relation to consider static and
dynamic typing interaction. However, gradual typing provides this interaction
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by replacing type equality with type consistency [38]. The defined the Ob?
<:

object calculus showing how the type consistency relation can be naturally com-
bined with subtyping. Gradual typing also identified unification-based constraint
resolution as a suitable approach to integrate both dynamic and static typing [38].
However, with gradual typing a dynamic type is always implicitly converted into
static without any static type-checking, because type inference is not performed
over dynamic references. Gradual typing is the closest approach to the hybrid
type system included in C# 4.0, where the main difference is that C# employs
a nominal type system instead of a structural one [28].

The work developed by Wrigstad et al. allows the combination of dynamic
and static typing in the Thorn programming language [39]. Thorn offers like

types, an intermediate point between static and dynamic types [40]. Occurrences
of like types variables are checked statically within their scope but, as they
may be bound to dynamic values, their usage must be still checked at runtime.
like types facilitate initial prototypes to smoothly evolve into efficient and ro-
bust applications. like types increase the robustness of the Thorn programming
language, and programs developed using like types have been assessed to be
about 3x and 6x faster than using dynamic types (dyn) in the same programming
language [40].

Although the Just programming language [41] does not combine dynamic and
static typing, it added implicit type reconstruction to an explicitly typed lan-
guage such as Java to obtain statically checked duck typing. The combination
of syntax-directed and constraint-based type-checking allows the programmer to
write generic code without defining class hierarchies [42]. One major limitation
of this approach is that they do not consider methods that generate constraints
(polymorphic methods) to invoke other polymorphic methods.

2.3 Static Typing for Dynamically Typed Lan-

guages

There are also some works aimed at performing static type inference of dynami-
cally typed languages to discover type errors before program execution. Diamond-
back Ruby (DRuby) is a tool that blends the Ruby dynamic type system with a
static typing discipline [43]. DRuby was applied to a suite of benchmarks, finding
several bugs that would cause run-time type errors. When possible, DRuby infers
static types to discover type errors in Ruby programs. In many cases, the DRuby
programmer must annotate programs with types in order to obtain compile-time
type errors. Since DRuby trusts annotations to be correct, improperly annotated
code may cause run-time type errors, and these errors may be misleading. DRuby
does not use the statically inferred type information to optimize the generated
code.

Anderson, Giannini and Drossopoulou formalized a subset of JavaScript (JS0),
defining a structural type inference algorithm that is sound with respect to a type
system [44]. Therefore, programmers can benefit from the safety offered by the

8



2.3. Static Typing for Dynamically Typed Languages

type system, without the need to write explicitly types in their programs. Differ-
ent features of the JavaScript programming language such as dynamic removal
of members or dynamic code evaluation are not supported. As with DRuby, the
type information gathered by the JS0 is not used to perform code optimizations.

λJS is a JavaScript core calculus structured as a small-step operational seman-
tics [45]. The specified semantics was implemented with PLT Redex [46] and used
to test λJS for safety. A desugaring process was implemented and applied to a col-
lection of JavaScript test suites, showing that they can be translated into λJS (i.e.,
the core is adecuate to represent JavaScript). The formalization of the semantics
was used to define a type system that disallows access to XMLHttpRequest,
proving its safety.

Another approach to add static typing to a dynamically typed language such
as JavaScript is using refinement and dependent types. The System D core cal-
culus merges syntax and semantic reasoning into a single powerful mechanism
of nested refinement types, wherein the typing relation is itself a predicate in
the refinement logic [47]. System D coordinates SMT-based logical implication
and syntactic subtyping to type-check dynamic language features such as runtime
type tests, value-indexed dictionaries, polymorphism, and higher-order functions.
System D permits dependent structural subtyping and a form of bounded quan-
tification. Although type annotations are optional, the type system does not
always infer them. The System D calculus has been scaled up to Dependent
JavaScript (DJS), an explicitly typed dialect JavaScript [48]. DJS extends Sys-
tem D with imperative updates, prototype inheritance and arrays. The DJS type
system is expressive enough to reason about a variety of JavaScript idioms found
in small examples drawn from several sources, including the SunSpider bench-
mark suite. The type information is not used for performing optimizations to
improve runtime performance of program execution.
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Chapter 3

Overview of the StaDyn
Programming Language

In this section an overview of the StaDyn programming language is described.
Chapter 4 details its type system and Chapter 5 describes its semantics. The
syntax of StaDyn is depicted in Appendix A.

3.1 Static and Dynamic Typing

3.1.1 Statically Typed Languages

A language is said to be safe if it produces no execution errors that go unno-
ticed and later cause arbitrary behavior [49], following the notion that well-typed
programs should not go wrong (i.e., reach a stuck state on its execution) [15].
Statically typed languages ensure type safety of programs by means of static
type systems. However, these type systems do not compile some expressions that
do not produce any type error at runtime (e.g., in .Net and Java it is not pos-
sible to pass the m message to an Object reference, although the object actually
implements a public m method). This happens because their static type systems
require ensuring that compiled expressions do not generate any type error at run-
time. Figure 3.1 illustrates this situation (the not compilable and no runtime type
error region).

Static typing is focused on making sure that no type error is produced at
runtime. This is the reason why languages with static typing employ a pessimistic
policy regarding to program compilation. This pessimism causes compilation
errors in programs that do not produce any runtime error. C# code shown in
Figure 3.2 is an example program of this scenario. Although the program does
not produce any error at runtime, the C# type system does not recognize it as a
valid compilable program, showing a compilation error.

At the same time, static languages also permit the execution of programs that
might cause an erroneous execution (e.g. array index out of bounds or null pointer
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No Runtime Type Error

Compilable with
runtime type

errors

Compilable and no
runtime type error

Not Compilable and 
no runtime type error

Not Compilable

Figure 3.1: Program execution of statically typed languages.

public class Test {  

  public static void Main() {  

    object[] v = new object[10]; 

    int summation = 0; 

    for (int i = 0; i < 10; i++) {  

      v[i] = i+1;  

      summation += v[i]; // Compiler Error 

    } 

  }  
} 

Figure 3.2: Not compilable C# program that would not produce any runtime error.

access). This scenario is represented by the compilable with runtime type errors
region in Figure 3.1.

3.1.2 Dynamically Typed Languages

The approach of dynamic languages is the opposite one. Instead of making sure
that all valid expressions will be executed without any type error, they make all
the syntactically valid programs compilable (Figure 3.3). This is a too optimistic
approach that causes a high number of runtime type errors that might have been
detected at compile time. This situation, where dynamic languages commonly
throw runtime exceptions, is what is represented in Figure 3.3 as compilable with
runtime type errors. This approach causes too many runtime type errors, com-
piling programs that might have been identified as erroneous statically. The C#
source code in Figure 3.4 is an example of this too optimistic approach. This
erroneous program is compiled without any error (the dynamic type in C# 4.0
postpones type checking until runtime), although a static type system might have
detected the error before its execution.

3.1.3 Supporting both Approaches

The StaDyn programming language performs type inference at compile type,
minimizing the compilable with runtime type errors region of dynamic languages
(Figure 3.3) and the not compilable and no runtime type error area of static
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No runtime type error

Compilable with
runtime type
errrors

Compilable and no
runtime type error

Not Compilable

Figure 3.3: Program execution of dynamically typed languages.

public class Test {  

  public static void Main() {  

    dynamic myObject = "StaDyn"; 

    // No compilater error  

    System.Console.Write(myObject*2); 

  } 

}  

Figure 3.4: Compilable dynamically typed C# program that generates runtime type errors.

languages (Figure 3.1). Consequently, StaDyn detects the compilation error of
the dynamic program shown in Figure 3.4 (that C# does not detect) and compiles
the valid statically typed code in Figure 3.2 (that C# does not compile) –using
the appropriate StaDyn syntax.

For both typing approaches, the very same programming language is used,
letting the programmer move from an optimistic, flexible and rapid development
(dynamic) scenario to a more robust and efficient one (static). This transition can
be done without changing the application source code, only modifying the com-
piler settings. Therefore, the dynamism concern (i.e., flexibility vs. robustness
and performance) is separated from the functional requirements of the application
(its source code).

3.2 The StaDyn Programming Language

The features of the StaDyn programming language are now presented, identifying
(but not detailing) the techniques employed. A formal description of its type
system is depicted in Chapter 4 and its semantics is presented in Chapter 5. A
summary of the most relevant implementation issues is presented in § 3.3.

The StaDyn programming language is an extension of C# 3.0 [50]. Although
the work presented in this dissertation could be applied to any object-oriented
statically-typed programming language, C# has been used to extend the behav-
ior of its implicitly typed local references. In StaDyn, the type of references can
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be explicitly declared, while it is also possible to use the var keyword to declare
implicitly typed references. StaDyn includes this keyword as a new type (it can
be used to declare local variables, fields, method parameters and return types),
whereas C# 3.0 only provides its use in the declaration of initialized local ref-
erences. Therefore, var references in StaDyn are more powerful than implicitly
typed local variables in C# 3.0.

The dynamism of var references is placed in a separate file (an XML docu-
ment). The programmer does not need to manipulate these XML documents di-
rectly, leaving this task to the StaDyn IDE [51]. When the programmer (un)sets
a reference as dynamic, the IDE transparently modifies the corresponding XML
file. Depending on the dynamism of a var reference, type checking and type
inference is performed pessimistically (for static references) or optimistically (for
dynamic ones). Since the dynamism concern is not explicitly stated in the source
code, StaDyn facilitates the conversion of dynamic references into static ones,
and vice versa. This separation facilitates the process of turning rapidly devel-
oped prototypes into final robust and efficient applications. It is also possible
to make parts of an application more adaptable, maintaining the robustness and
runtime performance of the rest of the program.

3.2.1 Multiple Types in the Same Scope

Existing statically typed languages force a variable of type T to have the same
type T within the scope in which it is bound to a value. Even languages with
static type inference (type reconstruction) such as ML [52] or Haskell [53] do not
permit the assignment of different types to the same polymorphic reference in the
same scope.

In contrast, dynamic languages provide the use of one reference to hold dif-
ferent types in the same scope. This is easily implemented at runtime with a
dynamic type system. However, StaDyn offers this feature statically, taking into
account the concrete type of each reference. The StaDyn program shown in Fig-
ure 3.5 is an example of this capability. The number reference has different types
in the same scope. It is initially set to a string, and an double is later assigned
to it. The static type inference mechanism implemented in StaDyn detects the
error in the last line of code. Moreover, a better runtime performance is obtained
because it is not necessary to use reflection to discover types at runtime (see
Chapter 6).

In order to obtain this behavior, an implicit parametric polymorphic type sys-
tem [54] that provides type reconstruction when a var reference is used has been
developed. The Hindley-Milner type inference algorithm has been implemented
to infer the types of local variables [34]. This algorithm has been modified to
perform type reconstruction of var parameters and attributes (fields) –described
in §§ 3.2.4 and 3.2.5.

The unification algorithm used in the Hindley-Milner type system provides
parametric polymorphism, but it forces a reference to have the same static type
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using System;  

class Test {  

  public static void Main() {  

    Console.Write("Enter a number, please: ");  

    var number = Console.In.ReadLine();  

    Console.WriteLine("Number of digits: {0}.", number.Length); 

    number = Math.Pow(Convert.ToInt32(number), 2);  

    Console.WriteLine("The square is {0}.", number);  

    int digits = number.Length; // Compiler error  

  } 

} 

Figure 3.5: A reference with different types in the same scope.

using System;  

class Test {  

  public static void Main() {  

    Console.Write("Enter a number, please: ");  

    var number0 = Console.In.ReadLine();  

    Console.WriteLine("Number of digits: {0}.", number0.Length); 

    var number1 = Math.Pow(Convert.ToInt32(number0), 2);  

    Console.WriteLine("The square is {0}.", number1);  

    int digits = number1.Length; // Compiler error  

  } 

} 

Figure 3.6: Corresponding program after the SSA transformation.

in the scope it has been declared. To overcome this drawback a version of the SSA
(Single Static Assignment) algorithm [55] has been developed. This algorithm
guarantees that every reference is assigned exactly once by means of creating new
temporary references. Since type inference is performed after the SSA algorithm,
we have implemented it as a previous AST (Abstract Syntax Tree) transformation.
The implementation of this algorithm follows the Visitor design pattern [56].

Figure 3.6 shows the corresponding program after applying the AST trans-
formation to the source code in Figure 3.5. The AST represented by the source
code in Figure 3.6 is the actual input to the type inference system. Each number

reference is inferred to a single static type.

3.2.2 Duck Typing

Duck typing1 [1] is a property of dynamic languages that means that an object
is interchangeable with any other object that implements the same dynamic in-
terface, regardless of whether those objects have a related inheritance hierarchy
or not. Duck typing is a powerful feature offered by most dynamic languages.

There exist statically typed programming languages such as Scala [57] or
OCaml [58] that offer structural typing, providing part of the benefits of duck

1It receives its name from the idiom if it walks like a duck and quacks like a duck, it must
be a duck.
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  var reference; 

  if (new Random().NextDouble() < 0.5) 

    reference = new StringBuilder("A string builder"); 

  else  

    reference = "A string";  

  Console.WriteLine(reference.Length); 

Figure 3.7: Static duck typing.

typing. However, the structural typing implementation of Scala is not implicit,
forcing the programmer to explicitly declare part of the structure of types. In
addition, intersection types should be used when more than one operation is ap-
plied to a variable, making programming more complicated. Although OCaml
provides implicit structural typing, variables should only have one type in the
same scope, and this type is the most general possible (principal) type [59]. Prin-
cipal types are more restrictive than duck typing, because they do not consider
all the possible (concrete) values a variable may hold.

The StaDyn programming language offers static duck typing. The benefit
provided by StaDyn is not only that it supports (implicit) duck typing, but
also that it is provided statically. Whenever a var reference points to a poten-
tial set of objects that implement a public m method, the m message could be
safely passed. These objects do not need to implement a common interface or a
(abstract) class with the m method. Since this analysis is performed at compile
time, the programmer benefits from both early type error detection and runtime
performance.

Static duck typing has been implemented, making the static type system of
StaDyn flow-sensitive. This means that it takes into account the flow context
of each var reference. It gathers concrete type information (opposite to classic
abstract type systems) [60] knowing all the possible types a var reference may
hold. Instead of declaring a reference with an abstract type that embraces all
the possible concrete values, the compiler infers the union of all possible concrete
types a var reference may point to. Notice that different types depending on
flow context could be inferred for the same reference, using the type inference
mechanism mentioned above.

Code in Figure 3.7 shows this feature. reference may point to either an
StringBuilder or a String object. Both objects have the Length property and,
therefore, it is statically safe to access to this property. It is not necessary to
define a common interface or class to pass this message. Since the type inference
system is flow-sensitive and uses concrete types, the programmer obtains a safe
static duck-typing system.

The key technique we have used to obtain this concrete-type flow-sensitive-
ness is union types [61]. Concrete types are first obtained by the abovementioned
unification algorithm (applied in assignments and method calls). Whenever a
branch is detected, a union type is created with all the possible concrete types
inferred. Type checking of union types depends on the dynamism concern (next
section).
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using System;  

using System.Text;  

public class Test {  

  public static int g(string str) {  

    var reference;  

    switch(Random.Next(1,3)) {  

      case 1:  reference=new StringBuilder(str); break; 

      case 2:  reference = str; break;  

      default: reference = new Exception(str);  

    }  

    return reference.Lenght; // Compiler error 

  }  

}  

Figure 3.8: Static var reference.

3.2.3 Separation of the Dynamism Concern

StaDyn permits the use of both static and dynamic var references. Depending
on their dynamism concern, type checking and type inference would be more
pessimistic (static) or optimistic (dynamic), but the dynamic semantics of the
programming language is not changed (i.e., program execution does not depend
on its dynamism). This idea follows the pluggable type system approach described
in [22] and [62]. Since the dynamism concern is not explicitly stated in the
source code, it is possible to customize the trade-off between runtime flexibility
of dynamic typing, and runtime performance and robustness of static typing. It
is not necessary to modify the application source code to change its dynamism.
Therefore, dynamic references could be converted into static ones, and vice versa,
without changing the application source code.

The source code in Figure 3.8 defines a g method, where reference may point
to a StringBuilder, String or Exception object. If we want to compile this
code to rapidly develop a prototype, we can pass the compiler the everything-
Dynamic option. However, although we are compiling the code in the optimistic
configuration, the compiler shows the following error message:

Error No Type Has Member (Semantic error). The dynamic type
‘
∨

([Var(8)=StringBuilder] ,[Var(7)=String] ,[Var(6)=Exception])’ has
no valid type with ‘Lenght’ member.

The error is produced because no public Lenght property (it has been mis-
spelled) is implemented in the String, StringBuffer or Exception classes. This
message shows how type-checking is performed at compile time, even in dynamic
scenarios, providing early type error detection. This feature improves the way
most dynamic languages work. For example, in the erroneous program in Fig-
ure 3.4 that C# compiles without any error, StaDyn detects the error at compile
time.

It is worth noting that setting a reference as dynamic does not imply that every
message could be passed to that reference; static type-checking is still performed.
The major change is that the type system is more optimistic when dynamic
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var references are used. The dynamism concern implies a modification of type
checking over union types. If the implicitly typed var reference inferred with
a union type is static, type checking is performed over all its possible concrete
types. However, if the reference is dynamic, type checking is performed over those
concrete types that do not produce a type error; if none exists, then a type error
is shown –this semantics is formalized in § 4.3.4.

Once the programmer has found out the misspelling error, he or she will mod-
ify the source code to correctly access the Length property. If the program is
once again compiled with the everythingDynamic option, the executable file is
generated. In this case, the compiler accepts passing the Length message, be-
cause both String and StringBubuilder (but not Exception) types offer that
property. With dynamic references, type checking succeeds if at least one of the
types that compose the union type is valid. The actual type will be discovered at
runtime, checking that the Length property can be actually accessed, or throwing
MissingMethodException otherwise.

Actually, the programmer does not need to set all the var references in a
compilation unit as dynamic. It is possible to specify the dynamism of each
single reference by modifying the corresponding XML file. As discussed above,
the programmer does not manipulate these XML documents directly, leaving this
task to the StaDyn IDE. Each StaDyn source code file may have a corresponding
XML document specifying its dynamism concern [51].

The generated g function program will not produce any runtime type error
because the random number that is generated will always be 1 or 2. However,
if the programmer, once the prototype has been tested, wants to compile the
application with using static type system, he or she may use the everythingStatic
option. When this option is used, no XML dynamism file is analyzed and static
typing is performed over every var reference in that compilation unit. In this
case, the compilation of the g method will produce an error message saying that
Length is not a property of Exception. The programmer should then modify
the source code to compile this program with the robustness and efficiency of a
static type system, but without requiring to translate the source code to a new
programming language since StaDyn provides both approaches.

3.2.4 Implicitly Typed Parameters

Concrete type reconstruction is not limited to local variables. StaDyn performs a
global flow-sensitive analysis of implicit var references. The result is an implicit
parametric polymorphism [54] more straightforward for the programmer than the
one offered by Java, C# (F-bounded) and C++ (unbounded) [63].

Implicitly typed parameter references cannot be unified to a single concrete
type. Since they represent any actual type of an argument, they cannot be
inferred the same way as local references. This issue is shown in the source
code of Figure 3.9. Both methods require the parameter to implement a specific
method, returning its value. In the getString method, any object could be
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public static var upper(var parameter) {  

 return parameter.ToUpper();  

}  

public static var getString(var parameter) { 

 return parameter.ToString();  

} 
 

Figure 3.9: Implicitly typed parameters.

passed as a parameter because every object accepts the ToString message. In
the upper method, the parameter should be any object capable of responding
to the ToUpper message. Depending on the type of the actual parameter, the
StaDyn compiler generates the corresponding compilation error.

For this purpose the StaDyn type system has been enhanced to be constraint-
based [64]. Types of methods in our object-oriented language have an ordered
set of constraints specifying the set of restrictions that must be fulfilled by the
parameters. In our example, the type of the upper method is:

∀αβ.α→ β|α : Class (ToUpper : void→ β)

This means that the type of the parameter (α) should implement a public
ToUpper method with no parameters, and the type returned by ToUpper (β) will
be also returned by upper. Therefore, if an integer is passed to the upper method,
a compiler error is shown. However, if a string is passed instead, the compiler
not only reports no error, but also infers the resulting type as a string. Type
constraint fulfillment is, thus, part of the type inference mechanism (the concrete
algorithm can be consulted in [65]).

3.2.5 Implicitly Typed Attributes

StaDyn also provides the use of the var type in class fields (attributes). With
implicitly typed attribute references, it is possible to create the generic Node class
shown in Figure 3.10. The Node class can hold any data of any type. Each time
the setData method is called, the new concrete type of the parameter is saved
as the data field type. By using this mechanism, the two lines with comments
report compilation errors. This coding style is polymorphic and it is more legible
that the parametric polymorphism used in C++ and much more straightforward
than the F-bounded polymorphism offered by Java and C#. At the same time,
runtime performance is equivalent to explicit type declaration (see Chapter 6).
Since the possible concrete types of var references are known at compile time,
the compiler has more opportunities to optimize the generated code, improving
runtime performance.

Implicitly typed attributes extend the constraint-based behavior of parameter
references in the sense that the concrete type of the implicit object parameter
(the object used in every non-static method invocation) could be modified on a
method invocation expression. In our example, the type of the data attribute is
modified each time the setData method (and the constructor) is invoked. This
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public class Node {  

  private var data;  

  private var next;  

  public Node(var data, var next) {  

    this.data = data;  

    this.next = next;  

  }  

  public var getData() {  

    return data;  

  }  

  public void setData(var data) {  

    this.data = data;  

  }  

} 

 

public class Test {  

  public static void Main() {  

    var node = new Node(1, 0);  

    int n = node.getData();  

    bool b = node.getData(); // Error  

    node.setData(true);  

    int n = node.getData();  // Error  

    bool b = node.getData();  

  }  

}  

 

 
Figure 3.10: Implicitly typed attributes.

does not imply a modification of the whole Node type, only the type of the single
Node object –due to the concrete type system employed.

For this purpose a new kind of assignment constraint has been added to the
type system (Chapter 4). Each time a value is assigned to a var attribute, an
assignment constraint is added to the method being analyzed. This constraint
postpones the unification of the concrete type of the attribute to be performed
later, when an actual object is used in the invocation. Therefore, the unification
algorithm is used to type-check method invocation expressions, using the concrete
type of the actual object (a detailed description of the unification algorithm can
be consulted in [65]).

3.2.6 Interaction between Static and Dynamic Types

StaDyn performs static type checking of both dynamic and static var references.
This makes possible the combination of static and dynamic code in the same
application, because the compiler gathers type information in both scenarios. The
source code in Figure 3.11 uses the getString and upper methods of Figure 3.9.
reference may point to a string or integer. Therefore, it is safe to invoke to the
getString method, but a dynamic type error might be obtained when the upper

method is called.

Since type-checking of dynamic and static code is different, it is necessary to
describe interoperation between both types of references. In case reference had
been set as a dynamic, the question of whether or not it could have been passed
as an argument to the upper or getString methods (Figure 3.9) arises. That is,
how optimistic (dynamic) code could interoperate with pessimistic (static) one.
An example is shown in Figure 3.11.

The first invocation is correct regardless of the dynamism of parameter. Being
either optimistic or pessimistic, the argument responds to the ToString method
correctly. However, it is not the same in the second scenario. By default, a
compilation error is obtained, because the reference parameter is static and it
may point to an integer, which does not implement a public ToUpper method.
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3.3. Implementation

var reference;  

string aString;  

if (new Random().NextDouble() < 0.5)  

reference = "String";  

else  

     reference = 3;  

aString = getString(reference); // Correct 

aString = upper(reference);     // Compiler error 

 // (correct if we set parameter to dynamic)  
 

Figure 3.11: Dynamic and static code interoperation.

 

public class List {  

 

  private var list;  

 

  public List(Node node) {  

    this.list = node;  

  }  

 

public static void Main() {  

    Node node = new Node(true, 0);  

    var aList = new List(node);  

    bool b1 = aList.list.getData();  

    node.setData(1);  

    bool b2 = aList.list.getData(); // Error 

    int n = aList.list.getData();  

  }  

}  

 
Figure 3.12: Alias analysis.

However, if the parameter of the upper method is set as dynamic, the compilation
will succeed.

This type checking is obtained taking into consideration the dynamism of
references in the subtyping relation of the language (§ 4.3.4). A dynamic reference
is a subtype of a static one when all the concrete types of the dynamic reference
promote to the static one. Promotion of static references to dynamic ones is
more flexible: static references should fulfill at least one constraint from the set
of alternatives.

3.2.7 Alias Analysis for Concrete Type Evolution

The problem of determining if a storage location may be accessed in more than
one way is called alias analysis [66]. Two references are aliased if they point to
the same object. Although alias analysis is mainly used for optimizations, we
have used it to know the concrete types of the objects a reference may point to.

Code in Figure 3.12 uses the Node class previously shown in Figure 3.10.
Initially, the aList reference points to a node whose data is a boolean. If we
get the data inside the Node object inside the List object, we get a bool. Then
the node is modified to hold an integer value. Repeating the previous access to
the data inside the Node object inside the List object, an int is then obtained.

The alias analysis algorithm implemented is type-based (uses type information
to decide alias) [67], inter-procedural (makes use of inter-procedural flow infor-
mation) [66], context-sensitive (differentiates between different calls to the same
method) [68], and may-alias (detects all the objects a reference may point to;
opposite to must point to) [69].
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3.3 Implementation

The StaDyn programming language has been implemented over the .Net Frame-
work 4.0 platform, using C# 4.0. Our compiler is a multiple-pass language proces-
sor that follows the Pipes and Filters architectural pattern [70]. We have used the
AntLR language processor tool to implement lexical and syntactic analysis [71]
(Appendix A). Abstract Syntax Trees (ASTs) have been implemented following
the Composite design pattern [56] and each pass over the AST implements the
Visitor design pattern [56].

Currently we have developed the following AST visits: two visitors for the
SSA algorithm; two visitors to load types into the types table; one visitor for
symbol identification [72] and another one for type inference; and two visitors to
generate code. Once the final compiler is finished (see § 7.1), the number of AST
visits will be reduced to optimize the implementation. The type system has been
implemented following the guidelines described in [73], and the code generation
module follows the design in [74].

We generate .Net intermediate language and then assemble it to produce the
binaries. At present, we use the CLR 2.0 as the unique compiler’s back-end.
However, we have designed the code generator module following the Parallel
Hierarchies design pattern [74, 75] to add both the DLR (Dynamic Language
Runtime) [14] and the zRotor [76] back-ends in the future (§ 7.1).
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Chapter 4

The Hybrid Static and Dynamic
Type System

After presenting an overview of the StaDyn programming language, this chap-
ter reduces StaDyn to its minimal core in order to formalize its type system.
The key features of the type system are a new interpretation of union and in-
tersection types [77], the combination of syntax-directed and constraint-based
type-checking, type inference of implicitly-typed dynamic and static references,
and flow-sensitive type checking [78]. Chapter 5 specifies the erasure semantics
of the StaDyn minimal core.

4.1 Informal Specification of the StaDyn Core

The StaDyn core specifies the minimal language features that allow the formal-
ization of its static and dynamic semantics. These features are functions, objects
(without methods), arrays, assignments, and integer and boolean expressions.
Type variables are also included to offer implicit type reconstruction by means of
extending the usage of the var reserved word added in C# 3.0 [50]. In the StaDyn
core, var references can be set as static (by default) or dynamic, modifying how
type checking is performed.

Figure 4.1 shows an example StaDyn core program that uses both static and
dynamic typing. In the StaDyn core, dynamic var references are explicitly de-
clared with the dyn reserved word. The major benefit of using StaDyn is that
static type checking is performed even over dynamic references. For instance, the
positiveX function statically checks that each data object in list provides a
public x field. Unlike C#, the StaDyn core prompts a compilation error in line
70 (function invocation in Figure 4.1), if code in line 69 is commented out. The
error indicates that one of the elements in the list (the integer) does not provide
the x message. In contrast, C# 4.0 compiles the code and the error is produced
at runtime [78].

Our compiler gathers type information at compile time in order to perform
static type checking over dynamic references. One of the elements we have used
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Chapter 4. The Hybrid Static and Dynamic Type System

01: var createNode(var data, var next) { 
02:   return new { data=data, next=next}; 
03: } 
04: var createPoint(int dimensions, int x,int y,int z) { 
05:   var point; 
06:   if (dimensions == 2) 
07:     point = new {x=x, y=y, dimensions=dimensions}; 
08:   else 
09:     point = new {x=x, y=y, z=z, dimensions=3}; 
10:   return point; 
11: } 
12: var createPoints(int number) { 
13:   int i; 
14:   var list, point; 
15:   i = 1; 
16:   point = createPoint(3,0,0,0); // Last node (null) 
17:   list = createNode(point, 0);  
18:   while (i < number) { 
19:     point = createPoint(i%2 + 2, number/2-i, i, i); 
20:     list = createNode(point, list); 
21:     i = i+1; 
22:   } 
23:   return list; 
24: } 
25: var positiveX(var list, int n) { 
26:   int i; 
27:   var l, result; 
28:   result = i = 0; 
29:   l = list; 
30:   while (i < n) { 
31:     if (l.data.x >= 0) 
32:       result = createNode(l.data, result); 
33:     l = l.next; 
34:     i = i+1; 
35:   } 
36:   return result;  
37: } 

38: int distance3D(/*dyn*/ var point) { 
39:   int value; 
40:   value = 2147483647; 
41:   // point.center; // Compiler error 
42:   if (point.dimensions == 3) 
43:     value = point.x*point.x + point.y*point.y  

                            + point.z*point.z; 

44:   return value; 
45: } 
46: var closestToOrigin3D(var list, int n) { 
47:   int i, minDistance; 
48:   var l, point3D; 
49:   minDistance = 2147483647; 
50:   l = list; 
51:   i = 0; 
52:   while (i < n) {   
53:     if (distance3D(l.data) < minDistance) { 
54:       minDistance = distance3D(l.data); 
55:       point3D = l.data; 
56:     } 
57:     l = l.next; 
58:     i = i+1; 
59:   } 
60:   return point3D;   
61: } 
62:  
63:  
64: void main() { 
65:   int i, numberOfPoints; 
66:   var list, positive, point; 
67:   numberOfPoints = 10; 
68:   list = createPoints(numberOfPoints); 
69:   // list.data = 3; // Compiler error 
70:   positive = positiveX(list, numberOfPoints);   
71:   point = closestToOrigin3D(list, numberOfPoints); 
72: } 

Figure 4.1: Example coded in the minimal core of StaDyn.

for this purpose is union types [61]. A union type T1 ∨ T2 denotes the ordinary
union of the set of values belonging to T1 and the set of values belonging to
T2 [79], representing the least upper bound of T1 and T2 [80]. A union type holds
all the possible types a reference may have. The set of operations (e.g., addition,
field access, assignment, invocation or indexing) that can be applied to a union
type are those accepted by every type in the union type (inference rules of static
union types are S-SUnionL and S-SUnionR in Figure 4.10). Union types were
already included in object-oriented languages, in type systems where they were
explicitly declared [81] or inferred from implicitly typed references [82].

In our example, the type inferred for list in line 68 (Figure 4.1) is a list of
{x:int, y:int, dimensions:int} ∨ {x:int, y:int, z:int, dimensions:int}, mean-
ing two or three dimensional points. In the invocation of the positiveX function
(line 70), it is statically checked that the argument is a list of objects that pro-
vide an x field. Since this condition is fulfilled statically, the program is compiled
without errors (and the static type information is used to optimize its execution).
However, if line 69 is uncomment, an error message will be shown.

The closestToOrigin3D function imposes more constraints to the list pa-
rameter. Objects in list must provide the dimensions, x, y and z fields because
of the invocation to distance3D. We represent these constraints by means of
intersection types [61]. T1 ∧ T2 denotes all the values belonging to both T1 and
T2 [79], representing the greatest lower bound of T1 and T2 [80]. A type promotes
to a static intersection type only if it is a subtype of all the types collected by
the intersection type (S-SInterR rule in Figure 4.10).
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4.2. Abstract Syntax of the StaDyn core

In our example, the argument list of the closestToOrigin3D function must
be a list of X type, being X ≤ [dimensions:X1] ∧ [x:X2] ∧ [y:X3] ∧ [z:X4] (an
object with all these four fields). However, the invocation in line 71 produces
a compilation error because list holds a union type of both two and three di-
mensional points, and the former do not provide the z field. Our approach is
to make the type system more lenient, without renouncing static type checking.
The point parameter of the distance3D function can be declared as dynamic
(uncommenting the dyn type qualification in line 38 of Figure 4.1). In this case,
the promotion to intersection types is more permissive: the argument should be
a subtype of at least one of the types in the intersection type (rule S-DInterR
in Figure 4.10). Then, the program would generate no error because both types
of points offer a public dimensions field. This relaxation of the subtyping re-
lation when references are declared as dynamic is also applied to union types
(S-DUnionL): the promotion should be fulfilled by at least one of the types in
the union type.

It is worth noting that type checking is still performed at compile type even
when the programmer uses dynamic references. As an example, if line 41 in Fig-
ure 4.1 is uncommented, an error is shown even though point has been declared
as dynamic (the center message is not accepted by either of the two possible
points); whereas C# compiles the code, producing the type error at runtime [78].
This first example informally shows the objective of StaDyn: to offer both the
flexibility of dynamic typing and the robustness and efficiency of static typing.

4.2 Abstract Syntax of the StaDyn core

After an informal overview of the aim of the StaDyn core programming language,
its syntax and type system are now described –Chapter 5 describes its erasure
semantics by translating it into to C#. The first part of Figure 4.2 shows the
abstract syntax of the minimal core (the second and third parts are, respectively,
types and constraints). EBNF is used, where + means repetition of at least one
element, ∗ matches zero or more occurrences, ? means optionally matching the
previous element, and | represents alternative.

A program (P ) is composed of a sequence of function declarations (F ∗) fol-
lowed by the local variable declarations (D∗) and statements (S+) of the main
function. Although the programmer may use the return statement the same
way as in C#, it could only be placed as the last statement of the abstract syn-
tax. This transformation is performed by the parser to facilitate type inference
in conditional and iterative control structures (§ 4.3.6).

A statement can be any expression (including assignments), a conditional
statement (if), or an iterative one (while). Since assignments are expressions,
the parser annotates every expression node of the Abstract Syntax Tree (AST)
with a boolean value (lhsAssign) that reveals whether or not it is a direct left
child of an assignment. This value will be used by the type system for type-
checking purposes.
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Chapter 4. The Hybrid Static and Dynamic Type System

Program P ::= F ∗ D∗ S+

Function F ::= (void | ST ) id ( (ST id)∗ ) D∗ S∗ R?

Declaration D ::= ST id
Statement S ::= E | if E S+ S∗ | while E S∗

Return R ::= return E
Expression E ::= id | id ( E∗ ) | E ⊕ E | E ⊗ E | E # E | E = E |

E . id | E [ E ] | new ST [ E ]([ ])∗ |
new {( id = E )∗} | true | false | IntLiteral

Syntax types ST ::= int | bool | Array( ST ) | {(id:ST )∗} | TV
Type variable TV ::= Dyn? Xi

Dynamism Dyn ::= sta | dyn
Internal types T ::= ST | [ (id : T )∗ ] | ST × . . .× ST → ST ‖ C∗ |

{(id : T )∗} | Array(T) |
Dyn? T ∨ . . . ∨ T | Dyn? T ∧ . . . ∧ T

Constraints C ::= IT ≤ T | TV ← T

Figure 4.2: Abstract Syntax of the StaDyn minimal core.

The⊕ operator represents arithmetic operations, ⊗ logical ones and # symbol-
izes relational operators. Objects are created following the syntax of the C# 3.0
feature of anonymous types [50]: between curly braces, there is listed a sequence
of field identifiers followed by the assignment operator and an expression repre-
senting their initial values. The new expression for arrays creates one-dimensional
arrays. Multidimensional arrays should be built in loops repeating the construc-
tion of one-dimensional arrays.

4.3 Type System

Types used to describe the StaDyn minimal core type system are shown in the
second part of Figure 4.2. Syntax types (ST ) are those that may be directly
written by the programmer, whereas internal types (T ) are internally used by the
type system without the knowledge of the programmer. The point of avoiding
the direct use of internal types is to offer the programmer the greatest simplicity
without losing the expressive power of the type system.

Object types are specified describing a collection of their fields between curly
braces, not including methods1. Methods can be represented by functions where
this is the first parameter. Although this representation does not support
method overriding, it allows us to significantly reduce the StaDyn core type
system. StaDyn (the whole programming language) does support method over-
riding by extending the behavior described in [81]: when a message is passed to
a dynamic union type, it is checked that at least for one possible signature, the

1A class-based core like the one proposed in [83] would be more appropriate to formalize
methods and overriding.
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actual argument types are subtypes of the corresponding formal parameters; the
type of the method invocation expression is the union of the return types declared
by those methods that satisfy the previous condition.

Although the var keyword is part of the concrete syntax of type variables
(included in C# 3.0 to allow avoiding type specification of initialized local vari-
ables [50]), the parser assigns them unique sequential numbers (Xi metavariables
range over type variables). Type variables can be declared as dynamic (dyn) or,
by default, static (sta). Only intersection and union types can also be qualified
as dynamic or static.

Member types ([(id :IT )∗]) represent the collection of fields an object may
hold. Member types have been introduced in constraints to define structural
width coercion of object types to member types (S-OMember rule in Fig-
ure 4.10), because objects in StaDyn do not define width subtyping (S-Object
in Figure 4.10). This subtyping relation is used in the constraint resolution algo-
rithm when function calls are type-checked (T-Inv in Figure 4.16).

Type inference is specified with the general judgment Γ; Ω ` E : T ‖ C; Γ′,
meaning that under constraints C, environment Γ, and context Ω, expression E
has type T , producing the output environment Γ′. Environments (Γ) bind vari-
ables (identifiers) to types in the scope represented by Γ, and they also bind type
variables to types (if type variables have been inferred). Γ holds the environment
before the scope of E, and Γ′ stores the environment after typing E. Γ′ might
differ from Γ, containing inferred types of local variables and new types bound
to type variables inferred in E. Output environments have already been used to
define flow-sensitive type systems [84], because type variables may change their
types depending on the control flow [43].

A context (Ω) stores the information of the function being analyzed, in order
to type-check its statements. Ω.params saves the parameter list of the current
function, Ω.rt holds its declared return type, and Ω.tifp collects the types inferred
from function parameters (see § 4.3.2).

Figure 4.3 shows another example program of our core language. Elements of
the environment and the constraints generated are shown in the right part of the
figure. For example, in the scope of the main function in Figure 4.3, Γ holds the
assumptions Γ(increment):int, Γ(list1):X18, and, in line 16, Γ(X18):{data:X20,
next:X21}, Γ(X20):bool and Γ(X21):int. Since Γ(X20):bool in line 16, the state-
ment in line 17 is accepted by the type system. However in line 19 the type of
the object data field is changed to int and, hence, line 20 compiles without any
error, whereas line 21 is now erroneous. This example shows how a variable can
hold different types in the same scope, depending on the execution flow. This
is a common feature of dynamically typed languages, but StaDyn offers it in a
statically typed way. This process has also been applied to control structures
(§ 4.3.6).

We also define two kinds of constraints (the last part of Figure 4.2). Subtyping
constraints (T ≤ T ) require the type on the left to be a subtype of (promote to)
the type on the right. Assignment constraints (TV ← T ) not only check that an
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01: var createNode(var data, var next) { Γ(data):X10, Γ(next):X11 
02:   return new { data=data, next=next};  

03: } Γ(createNode):X10×X11→X12 ║ {data:X10,next:X11} ≤ X12 
04: void setData(var 

node, var data) { 
Γ(node):X13, Γ(data):X14 

05:   node.data = data; X13 ≤ [data:X15], X15 ← X14 
06: } Γ(setData): X13×X14→void ║ X13 ≤ [data:X15], X15 ← X14 
07: void clearList(var list, bool clear) { Γ(list):X16 
08:   if (clear)  
09:     list.next = 0; X16 ≤ [next:X17], Γ(X17)←int 

10: } Γ(X17):X17∨int, Γ(clearList):X16xbool→void ║ 
X16 ≤ [next:X17], Γ(X17)←X17∨int 

11: void main() {  
12:   var list1;  Γ(list1):X18 
13:   var list2;  Γ(list2):X19 

14:   int increment;  Γ(increment):int 
15:   bool boolean;  Γ(boolean):bool 
16:   list1 = createNode(true, 0); Γ(X18):{data:X20,next:X21}, 

Γ(X20):bool, Γ(X21):int 
17:   boolean = list1.data;  

18:   list2 = createNode(boolean, list1);  Γ(X19):{data:X22,next:X18}, 

Γ(X22):bool 
19:   setData(list1, 3);  Γ(X20):int 
20:   increment = list2.next.data + 1;  
21:   boolean = list1.data; // Compiler error  

22:   clearList(list2, false); Γ(X19):{data:X22,next:X18∨int}, 

Γ(X18):{data:X20,next:X21} 
23: }  

 

 Figure 4.3: Example concrete StaDyn core program.

assignment could be performed, but also are used to infer types, binding a type
variable to another type. Therefore, assignment constraints may modify type
variable bindings in type environments, when function invocation expressions are
checked. In line 5 of Figure 4.3, a subtyping constraint is generated for the node

variable; it should be an object with a data field, i.e., a subtype of a member
type: X13 ≤ [data:X15]. This constraint must be statically fulfilled wherever
the function setData is called, e.g., line 19. Line 5 is also an example of an
assignment constraint generation: X15 ← X14. When the setData function is
invoked, the data type of the node argument X15 will be assigned the type of the
data parameter X14. This is the reason why X20 is then bound to int in line 19.

4.3.1 Functions

We use � to denote well-formedness. Inference rules in Figure 4.4 not only check
well-formedness, but also generate output environments and constraints that are
used for type-checking subsequent expressions. As an example, T-Func adds
the identifier of the function being declared to the output environment. This
identifier type is now T1 × . . . × Tn → T ‖ C, denoting that it is possible to
type-check subsequent calls to it. Function types include the constraint set (C)
that must be satisfied by the arguments at each invocation. These constraints
are those produced by the statements within the function. For instance, the type
expression of the setData function in Figure 4.3 (line 6) has the two constraints
X13 ≤ [data:X15] and X15 ← X14. The rest of the rules in Figure 4.4 generate
no constraint at all, and output environments become the input of the following
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Ω.params = id1...idn,Ω.locals = idn+1...idn+m,Ω.rt = T,Ω.tifp = T1...Tn
id /∈ dom(Γ) Γ; Ω ` T1 id1 : � ‖ ∅; Γ1... Γn−1; Ω ` Tn idn : � ‖ ∅; Γn
Γn; Ω ` Tn+1 idn+1 : �‖∅; Γn+1... Γn+m−1; Ω ` Tn+m idn+m : �‖∅; Γn+m

Γn+m; Ω ` S1 : � ‖ C1; Γn+m+1... Γn+m+l−1; Ω ` Sl : � ‖ Cl; Γn+m+l

Γn+m+l; Ω ` R : � ‖ Cl+1; Γn+m+l+1

Γ′ = Γ, id : T1 × . . .× Tn → T ‖ C1 ∪ . . . ∪ Cl+1

Γ; ∅ ` T id(T1 id1...Tn idn) Tn+1 idn+1...Tn+m idn+m S1...Sl R : � ‖ ∅; Γ′
(T-Func)

id /∈ dom(Γ) Γ′ = Γ, id : T

Γ; Ω ` T id : � ‖ ∅; Γ′
(T-Decl)

Γ; Ω ` D1 : � ‖ ∅; Γ1 . . . Γn−1; Ω ` Dn : � ‖ ∅; Γn

Γ; Ω ` D1 . . . Dn : � ‖ ∅; Γn
(T-Decls)

Γ; Ω ` F1 : � ‖ ∅; Γ1 . . . Γn−1; Ω ` Fn : � ‖ ∅; Γn

Γ; Ω ` F1 . . . Fn : � ‖ ∅; Γn
(T-Funcs)

Figure 4.4: Program, declarations and functions.

terms, obtaining a flow-sensitive type checking.

4.3.2 Context

It is necessary to store information regarding a function in order to subsequently
perform type checking of the terms in the function scope. This information is
saved in the function context (Ω) by means of T-Func (Figure 4.4) and the
rules shown in Figure 4.5. At function declaration (T-Func), local variables are
stored in Ω.locals, parameters in Ω.params, and Ω.rt saves the return type specified
in the function declaration. The types inferred from the type parameters are
stored in Ω.tifp (it will be described later why this information is necessary to
perform type-checking of assignments, field accessing and array indexing). First,
T-Func (Figure 4.4) adds parameter types to Ω.tifp; in Figure 4.5, Ω.tifp-Field
inserts field types in Ω.tifp whenever an object type is in Ω.tifp; Ω.tifp-Array
and Ω.tifp-Inv do the same with arrays and function calls, respectively.

Notice that not only type variables are inserted in Ω.tifp. Objects are also
added because they may indirectly hold type variables in their fields. The same
happens with arrays, whose elements could be type variables.

4.3.3 Basic Expressions

This subsection describes the type-checking of variables, object field access, vector
indexing, arithmetic, relational and logical expressions. Although assignments
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Γ; Ω ` E : {id1 : T1, . . . , idn : Tn} ‖ C; Γ′

{id1 : T1, . . . , idn : Tn} ∈ Ω.tifp

include T1 . . . Tn in Ω.tifp
(Ω.tifp-Field)

Γ; Ω ` E : Array(T ) ‖ C; Γ′ Array(T ) ∈ Ω.tifp

include T in Ω.tifp
(Ω.tifp-Array)

Γ; Ω ` E1 : T1 ‖ C1; Γ1 . . . Γn−1; Ω ` En : Tn ‖ Cn; Γn
Γn; Ω ` id(E1, . . . , En) : T ‖ Cn+1; Γn+1 ∃ i ∈ [1, n], Ti ∈ Ω.tifp

include T in Ω.tifp
(Ω.tifp-Inv)

Figure 4.5: Inference rules for Ω.

Γ(id) : T ¬tv(T )

Γ; Ω ` id : T ‖ ∅; Γ
(T-Var)

Γ(id) : X Γ(X) : T

Γ; Ω ` id : T ‖ ∅; Γ
(T-BVar)

Γ(id) : X X ∈ ftv(Γ) id ∈ Ω.params ¬lhsAssign(id)

Γ; Ω ` id : X ‖ ∅; Γ
(T-PVar)

Γ(id) : X X ∈ ftv(Γ) id /∈ Ω.params lhsAssign(id)

Γ; Ω ` id : X ‖ ∅; Γ
(T-AVar)

Figure 4.6: Variables.

and function calls are also expressions, they will be described in §§ 4.3.5 and
4.3.7, respectively.

Figure 4.6 shows inference rules that type-check variables. The tv predicate
tests whether a type is a type variable or not, and the ftv function returns the set
of unbound type variables in an environment. T-Var types a variable previously
declared, when its type is not a type variable. When the type of an identifier is
a type variable and it is bound to another type, T-BVar types the identifier to
the type bound to the type variable. This happens, for instance, in line 17 of
Figure 4.3, where the type variable of list1 (X18) was previously bound to the
object type {data:X20,next:X21} in line 16.

Both T-PVar and T-AVar type-check identifiers when their types are free
type variables (not bound to any other type). In the first case, the variable can
be used when it is a parameter (thus, it has a value) and it is not the left-hand
side of an assignment1. On the other hand, T-AVar allows a free type variable

1The StaDyn core does not allow assigning values to function parameters in order to make
type-checking easier. This feature could be obtained by a syntactical transformation where
parameters are assigned to local variables, because parameters in C# are passed by value –by
default, when no ref and out keywords are explicitly used.
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Γ; Ω ` E1 : T1 ‖ C1; Γ′ Γ′ ` T1 ≤ int ‖ C2; Γ′′

Γ′′; Ω ` E2 : T2 ‖ C3; Γ′′′ Γ′′′ ` T2 ≤ int ‖ C4; Γ′′′′

Γ; Ω ` E1 ⊕ E2 : int ‖ C1 ∪ C2 ∪ C3 ∪ C4; Γ′′′′
(T-Arith)

Γ; Ω ` E1 : T1 ‖ C1; Γ1... Γn−1; Ω ` En : Tn ‖ Cn; Γn

Γ; Ω ` new {id1=E1, ..., idn=En}:{id1:T1, ..., idn:Tn} ‖ C1∪...∪Cn; Γn
(T-NObject)

Γ; Ω ` E : Te ‖ C1; Γ′ Γ′ ` Te ≤ int ‖ C2; Γ′′

Γ; Ω ` new T [E][ ]1...[ ]n : Array1(...Arrayn(Array(T ))) ‖ C1∪C2; Γ′′
(T-NArray)

Γ; Ω ` E : T ‖ C1; Γ′ X fresh Γ′ ` T ≤ [id : X] ‖ C2; Γ′′

X ∈ ftv(Γ′′) ∧X /∈ Ω.tifp ⇒ lhsAssign(E.id)

Γ; Ω ` E.id : X ‖ C1 ∪ C2; Γ′′
(T-Field)

Γ; Ω ` E1 : T1 ‖ C1; Γ′ X fresh Γ′ ` T1 ≤ Array(X) ‖ C2; Γ′′

Γ′′; Ω ` E2 : T2 ‖ C3; Γ′′′ Γ′′′ ` T2 ≤ int ‖ C4; Γ′′′′

X ∈ ftv(Γ′′′′) ∧X /∈ Ω.tifp ⇒ lhsAssign(E1[E2])

Γ; Ω ` E1[E2] : X ‖ C1 ∪ C2 ∪ C3 ∪ C4; Γ′′′′
(T-Array)

Figure 4.7: Basic expressions.

that is not a parameter to be used as an expression as long as it is the left-hand
side of an assignment (because the type variable will be then bound to a type in
the subsequent expression). For example, the utilization of the data parameter
in line 2 of Figure 4.3 is allowed because, despite its type is a free type variable
(X10), it is contained in Ω.params. list1 can be used in line 16 because, although
its type (X18) is not in Ω.tifp, it is in the left-hand side of an assignment.

Figure 4.7 shows the T-Arith inference rule of arithmetic expressions (for the
sake of brevity, relational and logical expressions are not shown). Operands of
arithmetic and relational expressions must be subtypes of int; logical expressions
should promote to bool. Output environments are used as the input environments
of the subsequent expressions, the one returned by the whole expression being the
last environment. The constraint set generated by each expression is the union
of all the constraints produced by each of the four premise judgments.

The new object expression (T-NObject) infers an object type comprising
the field labels and types of the corresponding expressions. Line 2 in Fig-
ure 4.3 is an example of this inference rule, where the type of the expression
is {data:X10, next:X11}. In a similar way, the T-NArray rule types the array
construction expressions. The expression that specifies the array size must pro-
mote to integer. Only one-dimensional arrays can be constructed at a time, and
the type returned is an array of the same dimensions as pairs of square brackets.
The type of the new expression in line 11, Figure 4.8, is Array(X34), X34 being a
new fresh type variable.
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01: void vector(var[] w) {  Γ(w):Array(X30) 
02:   var[] v;  Γ(v):Array(X31) 
03:   int a;  
04:   v = new var[2]; Γ(X31):X32 
05:   a = v[3]; // Compiler error  

06:   v[0] = w[0] = 0; Γ(X32):int, Γ(X30):X30∨int 
07:   v[1] = w[1] = true; Γ(X32):int∨bool, Γ(X30):X30∨int∨bool 
08: }   
09: void main() {  

10:   var[] ve; Γ(ve):Array(X33) 
11:   ve = new var[3]; Γ(X33):X34 
12:   ve[2] = new { attribute = 3 }; Γ(X34):{attribute:int} 
13:   vector(ve); Γ(X34):{attribute:int}∨int∨bool 
14: }  

Figure 4.8: Example use of arrays in StaDyn core.

When accessing object fields (T-Field), the object should promote to the
member type [id : X], X being a new fresh type variable. A member type is an
internal type that denotes the set of fields an object should hold. Therefore, an
object promotes to a member type following the same rules as structural subtyp-
ing for objects described in [85] (rule S-OMember in Figure 4.10). Moreover,
if the object field is a free type variable not inferred from the parameters, i.e.,
not in Ω.tifp, it must be a direct left child of an assignment expression. Line 42
in Figure 4.1 is an example of a correct term. Although the dimensions field
of the point object is a free type variable and it is not the left-hand side of an
assignment, its type is in Ω.tifp.

T-Array requires the first expression to be a subtype of an array, and the
index to be an integer. As with objects, if the calculated type is a free type
variable, it should be the left-hand side of an assignment. This predicate generates
a compilation error in line 5 of Figure 4.8. The type of the elements of the v

array is the free type variable X32, not inferred from the parameters (v is a local
variable), producing a compilation error because no value has been assigned to
it.

4.3.4 Subtyping

Judgments in subtyping rules (Γ ` T1 ≤ T2 ‖ C; Γ′) require an input environment
(Γ) and generate a set of constraints (C) and an output environment (Γ′). The
input environment is used to know the type variables that might be bound to
other types. In effect, the T-TVBS rule in Figure 4.9 types any expression to
the type which is bound to the expression type variable.

The output environment is used to bind a type variable to a type when the type
variable must be a subtype of a particular type. This is precisely the behavior
of the S-FTVL and S-FTVR rules in Figure 4.10 that, in addition, generate a
subtyping constraint. An example expression where the S-FTVL rule is applied
is node.data in Figure 4.3, line 5. The T-Field rule requires the type of node

(the X13 free type variable), to be a subtype of the member type [data:X15]
–X15 being a new fresh type variable. Then, the S-FTVL rule generates a
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Γ; Ω ` E : X ‖ C; Γ′ Γ′(X) : T

Γ; Ω ` E : T ‖ C; Γ′
(T-TVBS)

Figure 4.9: Type variable binding substitution.

new X13 ≤ [data:X15] constraint and binds [data:X15] to X13 in the output
environment Γ′.

S-FTVR offers the same functionality when a concrete type must promote
to a free type variable. This rule is used in return statements inside functions
that return a type variable (e.g., line 2 in Figure 4.3). When both type variables
are not bound to any type, only a subtyping constraint is produced (S-FTVs in
Figure 4.10).

The arrays (S-Array) and objects (S-Object) type constructors are invari-
ant. Array(T1) is a subtype of Array(T2) when T1 and T2 are equivalent. T1

and T2 are equivalent under the subtype relation, when T1 ≤ T2 and T2 ≤ T1

(E-Types). An object promotes to another one when both have the same num-
ber of fields and equal field labels, and the corresponding types are equivalent
(S-Object).

Member types were introduced for structural subtyping of objects. An object
type is a subtype of a member type when the former has all the members of the
latter, and their corresponding types are structurally equivalent (S-OMember).
This rule is necessary in the fulfillment of subtyping constraints of function in-
vocation (§ 4.3.7). As an example, the setData function in Figure 4.3 has the
X13 ≤ [data : X15] constraint (line 6). When the function is called in line 19 pass-
ing the {data : X20, next : X21} object as the first argument, the S-OMember
subtyping rule confirms that the argument promotes to the parameter.

Subtyping rules for union and intersection types are an enhancement of the
ones defined by other authors such as [61] and [86] (S-SUnionL, S-SUnionR, S-
SInterR and S-SInterL), adding new dynamic typing rules (S-DUnionL and
S-DInterR) –[77] details this new interpretation of union and intersection types.
If the type variable bound to a union type has been declared as static, the set
of operations that can be applied to that union type are those accepted by every
type in the union type (S-SUnionL). However, if the reference is dynamic, type-
checking is more permissive. In that case, it is possible to perform an operation
when it is accepted by at least one of the types in the union type (S-DUnionL)
–in the conclusion of the rule, ∪Γi and ∪Ci represent the union of all the Γi and
Ci that fulfill the predicate in the premise. If the operation cannot be applied to
any type, a type error will be generated even if the reference is dynamic. This
behavior can be seen in lines 18 and 19 of Figure 4.11. The type of both sta

and din variables is int∨bool, but sta is static whereas din is dynamic. This
difference prevents the arithmetic operation in line 18 from compiling (the plus
operator cannot be applied to a bool), while it is correct in line 19 (addition is
defined for integers).
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Γ ` bool ≤ bool ‖ ∅; Γ
(S-Bool)

Γ ` int ≤ int ‖ ∅; Γ
(S-Int)

X ∈ ftv(Γ) T /∈ ftv(Γ) C = X ≤ T Γ′ = Γ, X : T

Γ ` X ≤ T ‖ C; Γ′
(S-FTV)

X ∈ ftv(Γ) T /∈ ftv(Γ) C = T ≤ X Γ′ = Γ, X : T

Γ ` T ≤ X ‖ C; Γ′
(S-FTV)

X1 ∈ ftv(Γ) X2 ∈ ftv(Γ) C = X1 ≤ X2

Γ ` X1 ≤ X2 ‖ C; Γ
(S-FTVs)

Γ ` T1 ≤ T2 ‖ C1; Γ′ Γ′ ` T2 ≤ T1 ‖ C2; Γ′′

Γ ` T1 ≡ T2 ‖ C1 ∪ C2; Γ′′
(E-Types)

Γ ` T1 ≡ T2 ‖ C; Γ′

Γ ` Array(T1) ≤ Array(T2) ‖ C; Γ′
(S-Array)

Γ ` T1 ≡ T ′1 ‖ C1; Γ1 . . . Γn−1 ` Tn ≡ T ′n ‖ Cn; Γn

Γ ` {id1:T1, ..., idn:Tn} ≤ {id1:T ′1, ..., idn:T ′n} ‖ C1 ∪ . . . ∪ Cn; Γn
(S-Object)

∀ i ∈ [1,m], ∃ j ∈ [1, n], id′i = idj, Γi−1 ` T ′i ≡ Tj ‖ Ci; Γi

Γ0 ` {id1:T1, ..., idn:Tn} ≤ [id′1:T ′1, ..., id
′
m:T ′m] ‖ C1 ∪ . . . ∪ Cm; Γm

(S-OMember)

∀ i ∈ [1, n],Γ ` Ti ≤ T ‖ Ci; Γi

Γ ` sta T1 ∨ . . . ∨ Tn ≤ T ‖ C1 ∪ . . . ∪ Cn; Γ1 ∪ . . . ∪ Γn
(S-SUnionL)

Γ ` T i∈1..n
i ≤ sta T1 ∨ . . . ∨ Tn ‖ ∅; Γ (S-SUnionR)

∃ i ∈ [1, n],Γ ` Ti ≤ T ‖ Ci; Γi

Γ ` dyn T1 ∨ . . . ∨ Tn ≤ T ‖ ∪ Ci;∪Γi
(S-DUnionL)

Γ ` sta T1 ∧ . . . ∧ Tn ≤ T i∈1..n
i ‖ ∅; Γ (S-SInterL)

∀ i ∈ [1, n],Γ ` T ≤ Ti ‖ Ci; Γi

Γ ` T ≤ sta T1 ∧ . . . ∧ Tn ‖ C1 ∪ . . . ∪ Cn; Γ1 ∪ . . . ∪ Γn
(S-SInterR)

∃ i ∈ [1, n],Γ ` T ≤ Ti ‖ Ci; Γi

Γ ` T ≤ dyn T1 ∧ . . . ∧ Tn ‖ ∪ Ci;∪Γi
(S-DInterR)

Figure 4.10: Subtyping and type equivalence.
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01: var getElement(var list,  
               var fstOrSnd) { 

02:   var element;  
03:   if (fstOrSnd)  
04:     element = list.data;  
05:   else 
06:     element = list.next.data; 
07:   return element; 
08: } 
09: int increment(int value) { 
10:   return value + 1;  
11: } 

 

12: void main() { 
13:   int integer; 
14:   var listOfTwo, sta; 
15:   dyn var din; 
16:   listOfTwo = createNode(1,createNode(true, 0)); 
17:   din = sta = getElement(listOfTwo, true); 
18:   integer = sta + 1; // Compiler error  
19:   integer = din + 1; 
20:   increment(din); // Compiler error  
21: } 
 

Figure 4.11: Example use of dynamic and static references in StaDyn core.

In parallel, a type promotes to a static intersection type only if it is a subtype
of all the types collected by the intersection type (rule S-SInterR). Similarly, we
have defined the dynamic behavior to be more lenient, accepting the promotion
when a type promotes to at least one of the types in the intersection type (rule
S-DInterR). An example is the function call in line 71 of Figure 4.1: data of the
list argument must be a subtype of [dimensions:X1]∧[x:X2]∧[y:X3]∧[z:X4]; the
program is compiled only when the point parameter in line 38 is dynamic (two
and three dimensional points provide dimensions, x, and y fields), producing
an error in case it is static (the z field is not implemented by two dimensional
points).

It is worth noting that the definition of subtyping is not complete for union and
intersection types. We include inference rules for neither dynamic union types on
the right-hand side (supertypes), nor dynamic intersection types on the left-hand
side (subtypes). This is because the StaDyn core type system never type-checks
whether a dynamic intersection type is a subtype of another type –they always
appear in the right-hand side of subtyping constraints– or any type promotes to
a dynamic union type –they are always checked to be subtypes of another type.

Since StaDyn does not yet support higher-order functions (delegates in C#
terminology), we do not specify subtyping of the function type constructor. Sub-
typing is not defined between member types either, because they only appear in
constraints. Therefore, the current definition of the subtyping relation is neither
reflexive nor transitive.

4.3.5 Assignments

The abstract syntax in Figure 4.2 allows any expression to be the left-hand side
of an assignment. The type system rejects all those expressions that cannot be
used in that context. Only identifiers, array indexing and field access expressions
can be the left-hand side of an assignment. For the sake of brevity, those rules
are not shown.

The four inference rules in Figure 4.12 describe assignment expressions. T-
Assign types assignment expressions when the left-hand side expression type is
not a type variable. This straightforward rule only requires the right-hand side
to be a subtype of the left-hand side. In case the left-hand side is a type variable,

35



Chapter 4. The Hybrid Static and Dynamic Type System

Γ; Ω ` E1 : T1 ‖ C1; Γ′ ¬tv(T1)
Γ′; Ω ` E2 : T2 ‖ C2; Γ′′ Γ′′ ` sta T2 ≤ T1 ‖ C3; Γ′′′

Γ; Ω ` E1 = E2 : T1 ‖ C1 ∪ C2 ∪ C3; Γ′′′
(T-Assign)

Γ; Ω ` E1 : X ‖ C1; Γ′

Γ′; Ω ` E2 : T ‖ C2; Γ′′ Γ′′′ = Γ′′, X : T

Γ; Ω ` E1 = E2 : T ‖ C1 ∪ C2; Γ′′′
(T-TVAssign)

Γ; Ω ` E1 : T1 ‖ C1; Γ′

X fresh Γ′ ` T1 ≤ [id : X] ‖ C2 Γ′; Ω ` E2 : T2 ‖ C3; Γ′′

Γ′′′ = Γ′′, X : T2 if T1 ∈ Ω.tifp, then C4 = X ← T2, else C4 = ∅
Γ; Ω ` E1.id = E2 : T2 ‖ C1 ∪ C2 ∪ C3 ∪ C4; Γ′′′

(T-FAssign)

Γ; Ω ` E1[E2] : X ‖ C1; Γ′

Γ′; Ω ` E3 : T ‖ C2; Γ′′ Γ′′′ = Γ′′, X : Γ′′(X) ∨ T
if X ∈ Ω.tifp, then C3 = X ← X ∨ Γ′′(X) ∨ T, else C3 = ∅

Γ; Ω ` E1[E2] = E3 : T ‖ C1 ∪ C2 ∪ C3; Γ′′′
(T-AAssign)

Figure 4.12: Assignments.

it will from now on be bound to the type of the right-hand side expression (T-
TVAssign).

T-FAssign types the assignment of an object field when it is a type variable.
As with the T-Field rule, the object should be a subtype of a member type
with the specific field label. The new field type will be the type of the right-hand
side expression, regardless of its previous type. Finally, if the field type has been
inferred from a parameter, a new assignment constraint will be generated. This
constraint will cause changing the field type of the argument when the function
is called. An example of this kind of assignment constraint generation is shown
in the setData function in Figure 4.3 (X15 ← X14). Calling this function with an
object as the first argument (line 19) changes the type of the argument’s data to
the type of the second argument (int), making the statement in line 20 correct.

For an array type whose elements are type variables (T-AAssign), the new
type of its elements will be a union type comprising its previous type and the type
of the right-hand side. Therefore, the type of v in line 8 of Figure 4.8 is an array
of integers or booleans (int∨bool) because it holds both. If the type variable
has been inferred from the function parameters, a new assignment constraint
will be generated including the own type variable in the right-hand side of the
assignment. This is the case of the w variable in the vector function (line 8 in
Figure 4.8). Unlike the type of v, the type of w (X30) is included in the union type
(X30∨int∨bool), denoting that the type of the actual parameter in the invocation
will be included in the union type. Therefore, the type of the elements of ve when
the function vector is called in line 13 is {attribute:int}∨int∨bool.
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Γ; Ω ` E : T ‖ C1; Γ′ Γ′ ` T ≤ Ω.rt ‖ C2; Γ′′

Γ; Ω ` return E : � ‖ C1 ∪ C2; Γ′′
(T-Return)

Γ; Ω ` E : T ‖ C ′; Γ′ Γ′ ` T ≤ bool ‖ C ′′; Γ′′

Γ′′; Ω ` S1 : � ‖ C1; Γ1 . . . Γn−1; Ω ` Sn : � ‖ Cn; Γn
Γ′′; Ω ` Sn+1 : �‖Cn+1; Γn+1 . . . Γn+m−1; Ω ` Sn+m : �‖Cn+m; Γn+m

Γ; Ω ` if E S1 . . . Sn Sn+1 . . . Sn+m : � ‖
C ′ ∪ C ′′ ∪ join(C1 ∪ ... ∪ Cn, Cn+1 ∪ ... ∪ Cn+m); join(Γn,Γn+m)

(T-If)

Γ; Ω ` E : T ‖ C ′; Γ′ Γ′ ` T ≤ bool ‖ C ′′; Γ′′

Γ′′; Ω ` S1 : � ‖ C1; Γ1 . . . Γn−1; Ω ` Sn : � ‖ Cn; Γn

Γ; Ω ` while E S1...Sn : � ‖ C ′∪C ′′∪join(C1∪...∪Cn, ∅); join(Γn, ∅)
(T-While)

Figure 4.13: Statements.

4.3.6 Statements

The minimal core includes the return, if and while statements (Figure 4.13).
For the return statement, the expression type to be returned must be a subtype
of the declared return type (T-Return).

Control-flow branches of if and while statements are taken into considera-
tion to keep the flow-sensitiveness of our type system. The join of constraints
and the union of type environments take into consideration this difficulty, tak-
ing the type information obtained on each execution path and combining both
into a single constraint list and type environment. Each parameter represents
the type information of an exclusive control flow. Since it might happen that
the while body is not executed at runtime (it is not exclusive), the empty set
is passed as its second argument (T-While). An example use of the join
function is the type of the point variable ({x:int, y:int, dimensions:int} ∨
{x:int, y:int, z:int, dimensions:int}) –line 10 in Figure 4.1– that is created
from its types in lines 7 ({x:int, y:int, dimensions:int}) and 9 ({x:int, y:int,
z:int, dimensions:int}). The same happens with constraints: the joined con-
straint for the point parameter of the distance3D function (X1 ≤ [dimensions:X2]∧
[x:X3] ∧ [y:X4] ∧ [z:X5]) is obtained from the constraints generated in lines 42
(X1 ≤ [dimensions:X2]) and 43 (X1 ≤ [x:X3] ∧ [y:X4] ∧ [z:X5]).

The union of environments used in Figure 4.13 is also based on the join func-
tion described in Figure 4.14: variable bindings must be the same in both en-
vironments, and the resulting type variable binding set is the join of the type
variable binding sets of each flow path.

Figure 4.14 shows the algorithm used to implement the join function. Each
set holds either constraints (subtyping and assignment) or type variable bindings
(X:T in environments). The algorithm has been defined employing the compare

and union operations defined by the axioms in Figure 4.15. The algorithm takes
elements of both sets, adding new union and intersection types [61] to the return
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join(Set1, Set2) ≡ Set in

Set← ∅
∀ elem1 ∈ Set1

if ∃ elem2 ∈ Set2, compare(elem1, elem2)
Set← Set ∪ union(elem1, elem2)

else

Set← Set ∪ union(elem1)
∀ elem ∈ Set2 ÷ Set1

Set← Set ∪ union(elem)

Set1 ÷ Set2 ≡ Set in

Set← ∅
∀ elem1 ∈ Set1

if 6 ∃ elem2 ∈ Set2, compare(elem1, elem2)
Set← Set ∪ elem1

Figure 4.14: The join algorithm.

set. It first processes the elements in the first set, and then those included in the
second set but not in the first one (÷).

As Figure 4.15 shows, comparisons between constraints are based on the type
in the constraint’s left-hand side. This is because constraints are always generated
with a free type variable in its left-hand side. Definitions of the compare and
union operations in Figure 4.15 ensure that every constraint set will never have
two different constraints with the same left-hand side type variable. The only
statement that generates subtyping constraints with a particular type on the
left-hand side is the return statement. However, this statement cannot appear
in a control flow statement because of the AST transformation described in § 4.2.

Joins of assignment constraints and type variable bindings create a union type
consisting of the two types in each execution path. However, subtyping con-
straints are joined in a new intersection type. If a static reference should promote
to T1 in one flow path and be a subtype of T2 in the other, it must then be a
subtype of both (subtype of the intersection type).

The union function is also defined for constraints or type variable bindings
generated in only one of the optional execution paths (last four axioms in Fig-
ure 4.15). The union of a single static subtyping constraint is the own constraint,
because static typing must check every possible flow of execution. However, if the
type variable is dynamic, there is no resulting constraint because it has been pro-
duced in a single optional execution path and, since it is dynamic, the constraint
fulfillment is not mandatory. In assignment constraints and type variable bind-
ings, the type to be bound is included in the right-hand side of the assignment.
This means that the type variable will be bound to a new union type including
the type it was previously bound to, because a new type could be assigned to
the existing one in an optional control flow. As an example, the next field of the
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(J-Compare)

compare(X1←T1, X1←T2)

compare(X1≤T1, X1≤T2) compare(X1:T1, X1:T2)

(J-Union)

union(X←T1, X←T2) = X ← T1∨T2

union(sta X≤T1, sta X≤T2) = X ≤ sta T1∧T2

union(dyn X≤T1, dyn X≤T2) = X ≤ dyn T1∧T2

union(X:T1, X:T2) = X : T1∨T2 union(X←T ) = X←X∨T

union(sta X≤T ) = sta X≤T union(dyn X≤T ) = ∅

union(X:T ) = X : X∨T

Figure 4.15: Comparison and union operations.

list variable (X17) has the type X17∨int in line 10 of Figure 4.3. This implies
that the type of list2 in line 22 is converted from {data:X22, next:X18} (being
Γ(X18):{data:X20, next:X21}) to {data:X22, next:X18 ∨ int}. The result is that
the next field is changed because one possible flow of execution in the clearList
function may change its type to int.

4.3.7 Function Invocation

Figure 4.16 shows the two inference rules of function invocation. The difference
is in the existence of free type variable arguments (T-Inv if there is no free type
variable argument, and T-FTVInv otherwise). In both cases, the shift function
takes a function type and returns an equivalent one, renaming the numbers of type
variables to new fresh type variables. This process permits multiple invocations
of the same function, creating new type variables for each function invocation.
On each invocation, the types of the arguments are checked to be subtypes of the
parameter types.

If no argument is a free type variable, constraints resolution is performed. The
judgment Γs  C,Γ means that under the Γ input environment, Γs is a solution
for C; i.e., Γs holds all the substitutions to fulfill C under the Γ environment. In
that case, the type of the function call is the substitution Γ2n+2(T ), where Γ2n+2

is a solution for C. Under these circumstances, the C constraint set is solved and,
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shift(Γ(id)) : Tp1 × . . .× Tpn → T ‖ C
∀ i ∈ [1, n],Γi ` Ei : Ti ‖ Ci; Γi+1 ∀ i ∈ [1, n], Ti /∈ ftv(Γi+1)
∀ i ∈ [1, n],Γn+i ` sta Ti ≤ Tpi ‖ Cn+i; Γn+i+1 Γ2n+2  C; Γ2n+1

Γ1 ` id(E1 . . . En) : Γ2n+2(T ) ‖ C1 ∪ . . . ∪ C2n; Γ2n+2

(T-Inv)

shift(Γ(id)) : Tp1 × . . .× Tpn → T ‖ C
∀ i ∈ [1, n],Γi ` Ei : Ti ‖ Ci; Γi+1 ∃ i ∈ [1, n], Ti ∈ ftv(Γi+1)

∀ i ∈ [1, n],Γn+i ` sta Ti ≤ Tpi ‖ Cn+i; Γn+i+1

Γ1 ` id(E1 . . . En) : T ‖ C ∪ C1 ∪ . . . ∪ C2n; Γ2n+1

(T-FTVInv)

Figure 4.16: Function invocation.

hence, it is not included in the constraints generated by the function call. This
shows how constraint resolution is part of the type inference process (it is not
global, i.e., it is not performed after traversing the whole AST). If any argument
is a free type variable, C is added to the constraint set produced by a function
invocation expression (T-FTVInv).

The constraint resolution algorithm implemented is an adaptation of the al-
gorithm defined by Aiken and Wimmers [80] that performs inclusion constraint
resolution using union and intersection types. Its detailed description can be
consulted in [65].

4.3.8 Converting Implicit into Explicit Types

Our language defines an automatic conversion of dynamic implicitly typed union
types to explicit (particular) types (in assignments and function calls). When
the union type is static, the subtyping rules described in § 4.3.4 require types
in the union type to promote to the explicit type. However, if the implicit type
is dynamic, the conversion is too lenient because only one single promotion is
necessary to allow the conversion. This is why a static promotion is forced in both
assignments (rule T-Assign in Figure 4.12) and function invocations (rules T-
Inv and T-FTVInv in Figure 4.16). As an example, the din variable (typed dyn

int∨bool in line 20 of Figure 4.11) is passed as an argument to the increment

function that explicitly requires its value parameter to be int. Therefore, a
compilation error is generated even though the argument is dynamic, because the
value parameter is explicitly typed (and, hence, static).
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Chapter 5

Erasure Semantics

The objective of this chapter is twofold. First, to describe the translation tem-
plates used to generate code for the .Net platform employing the static type
information gathered by the compiler (Chapter 4). Second, based on the seman-
tics of C# [87], to describe the erasure semantics of the minimal core of StaDyn.

The StaDyn core may be translated into C# following either of two imple-
mentation styles: first, by type-passing, augmenting the runtime system to carry
information about type parameters; second, by erasure, removing all informa-
tion about type parameters at runtime [83]. We have used the second approach,
giving an erasure mapping from the StaDyn minimal core into C#. This style
corresponds to the current implementation of StaDyn, which is compiled into the
.Net platform by generating IL code (before the executable files), maintaining
no information about type parameters at runtime –here the translation to C#
is described for simplicity. Figure 5.1 shows an example translation that will be
used throughout this chapter. The StaDyn core source code is shown on the left,
while the corresponding output C# program is displayed on the right.

The translation is performed traversing the AST. This traversal is performed
after type checking, where the AST nodes were annotated with their types and a
copy of the state of the type environment (Γ) and context (Ω) in the conclusion
of each typing rule (written Γnode and Ωnode).

5.1 Type Erasure

The erasure of a type in the StaDyn core is the corresponding C# type that
will be used in the code generation process. Since type erasures depend on en-
vironments (Γ), we write |T |Γ for the erasure of the type T with respect to the
environment Γ. Translation rules insert type casts when necessary using the type
information obtained by the compiler, and omitting them when it is trivially safe
to do so, e.g., when the top type in C#, object, is the erased type that an
expression should have.

Figure 5.2 shows type erasures of the StaDyn minimal core. Function and

41



Chapter 5. Erasure Semantics

 01: using System 
 02: class AC_int_x_int_y { 

 03:   public int x;public int y;  
 04: } 
 05: class AC_int_x_int_y_int_z {  

 06:   public int x; public int y; public int z;  
 07: } 

 08: public class MainClass { 

dyn var point2D(int x, int y) { 09:   static AC_int_x_int_y point2D(int x, int y) { 
 10:     object _temp; 

  return new { x=x, y=y}; 11:     return new AC_int_x_int_y {x=x, y=y}; 

} 12:   } 
dyn var point3D(int x, int y, 

                int z) { 

13:   static AC_int_x_int_y_int_z point3D(int x, int y, int z) { 

 14:     object _temp; 
  return new { x=x, y=y, z=z}; 15:     return new AC_int_x_int_y_int_z {x=x, y=y, z=z}; 

} 16:   } 

dyn var point(dyn var dim,  
        dyn var x, dyn var y, 

        dyn var z) { 

17:   static object point(int dim, int x, int y, int z) { 

 18:     object _temp; 
  dyn var result; 19:     object result; 

  if (dim==2) 20:     if (dim == 2) 

    result = point2D(x,y); 21:       result = point2D(x, y); 
  else 22:     else 
    result = point3D(x,y,z); 23:       result = point3D(x, y, z); 

  return result; 24:     return result; 
} 25:   } 

void main() { 26:   public static void Main() { 

 27:     object _temp; 
  var sta; 28:     object sta; 
  dyn var din; 29:     object din; 

  sta = point(2, 0, 4, 3); 30:     sta = point(2, 0, 4, 3); 
  din = point(3, 0, 4, 3); 31:     din = point(3, 0, 4, 3); 

  sta.x + 32:     _temp = ((_temp=sta) is AC_int_x_int_y ? 

                (int)(((AC_int_x_int_y)_temp).x) : 
            (int)(((AC_int_x_int_y_int_z)_temp).x) ) +  

          din.y  33:             ((_temp=din) is AC_int_x_int_y ?  

                (int)(((AC_int_x_int_y)_temp).y) :  
            _temp is AC_int_x_int_y_int_z ?  

                (int)(((AC_int_x_int_y_int_z)_temp).y) : 
            (int)(_temp.GetType().GetField("y").GetValue(_temp)))* 

                * din.z; 34:             ((AC_int_x_int_y_int_z)din).z; 

} 35:   } 
 36: } 

StaDyn core (source)  C# (destination) 
 

Figure 5.1: Example translation from StaDyn core to C#.

|int|Γ = int |bool|Γ = bool |void|Γ = void |Array(T )|Γ = |T |Γ[ ]

X ∈ ftv(Γ)

|sta X|Γ = |dyn X|Γ = object

Γ(X) : T

|sta X|Γ = |dyn X|Γ = |T |Γ

|sta T1 ∨ . . . ∨ Tn|Γ = |dyn T1 ∨ . . . ∨ Tn|Γ = object

|sta [id1:T1, . . . , idn:Tn]|Γ = |dyn [id1 : T1, . . . , idn : Tn]|Γ = object

|sta {id1:T1, . . . , idn:Tn}|Γ = |dyn {id1:T1, . . . , idn:Tn}|Γ = AC |T1|Γ id1 . . . |Tn|Γ idn

where id1 . . . idn are lexicographically ordered, and
in AC |T1|Γ id1 . . . |Tn|Γ idn, T [ ]1 . . . [ ]n is replaced with T n

Figure 5.2: Type erasure definition.

42



5.2. Anonymous Classes

intersection type erasures are not used in our translation rules, because our lan-
guage does not support high-order functions, and intersection types only appear
in constraints (no code is generated for them).

5.2 Anonymous Classes

As shown in Figure 5.2, an anonymous class (AC |T1|Γ id1 . . . |Tn|Γ idn) is the
type erasure of each different object structure. Since subtyping rules in our
language require two objects to have the same structure (S-Object), we create
a unique anonymous class for each object structure. To do so, the name of
the anonymous class is the concatenation of each field name (lexicographically
ordered) followed by its type erasure –arrays T [ ]1 . . . [ ]n are replaced with T n
because square brackets are not allowed in C# identifiers.

These anonymous classes are generated in the first traversal (J KAC), after type-
checking the AST. The visit of each AST node receives the set of classes that have
already been declared. Starting from the AST root node (P ), this set is passed
from each node to their descendants. The only nodes that generate a new class
declaration are the object type and the new object expression. The following
translation template shows the anonymous class generation for the latter node.

AC |T1|Γ id1 . . . |Tn|Γ idn /∈ classes

JE = new {id1=E1, . . . , idn=En}KAC(classes) ,
classes← classes ∪ AC |T1|ΓE

id1 . . . |Tn|ΓE
idn

class AC |T1|ΓE
id1 . . . |Tn|ΓE

idn {
public |T1|ΓE

|id1|ΓE
;

. . .
public |Tn|ΓE

|idn|ΓE
;

}
where ΓE1 ; ΩE1 ` E1 : T1 . . . ΓEn ; ΩEn ` En : Tn,

id1 . . . idn are lexicographically ordered, and
in AC |T1|Γ id1 . . . |Tn|Γ idn, T [ ]1 . . . [ ]n is replaced with T n

Figure 5.1 shows how two anonymous classes (lines 2 to 7 of the C# code on
the right) are created in the traversal of two new object nodes (lines 11 and 15 of
the StaDyn core code on the left).

The second scenario where an anonymous class declaration is generated is
when an object type is used and its class has not been previously declared.
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AC |T1|Γ id1 . . . |Tn|Γ idn /∈ classes

JT = {id1:T1, . . . , idn:Tn}KAC(classes) ,
classes← classes ∪ AC |T1|ΓT

id1 . . . |Tn|ΓT
idn

class AC |T1|ΓT
id1 . . . |Tn|ΓT

idn {
public |T1|ΓT

|id1|ΓT
;

. . .
public |Tn|ΓT

|idn|ΓT
;

}
where id1 . . . idn are lexicographically ordered, and

in AC |T1|Γ id1 . . . |Tn|Γ idn, T [ ]1 . . . [ ]n is replaced with T n

5.3 Translation of Programs

The translation of a program consists of the import of the main .Net namespace
(System) followed by the declaration of anonymous classes (J KAC) (passing an
empty set of classes) and the final generation of code (J KCG).

JP Kprogram , import System ;

JP KAC(∅)
JP KCG

Code generated for a program (JP KCG) consists of a C# public class (MainClass)
followed by two helper setValue methods (explained in §§ 5.7 and 5.8). Each
function is translated into a corresponding static C# method, and the main
declarations and statements are placed inside the program’s entry point (the C#
Main method of the MainClass) –the example translation in Figure 5.1 omits the
two setValue methods.

44



5.4. Declarations

JP = F1 . . . Fn D1 . . . Dm S1 . . . SlKCG ,
public class MainClass {
private static object setValue(object obj, string id,

object value) {
obj.GetType().GetField(id).SetValue(obj,value);

return value;

}
private static object setValue(Array array, object value,

int index) {
array.SetValue(value, index);

return value;

}
JF1KCG . . . JFnKCG

public static void Main() {
object temp;

JD1KCG . . . JDmKCG

statement(S1) . . . statement(Sl)
}
}

Since not every single expression is a valid statement in C#, we define the
statement function to generate an artificial assignment to a temporary reference
( temp), converting an expression into a valid C# statement when necessary.

Definition 5.1 Given a statement node S, we define:

statement(S) ≡
{

temp=JSKCG; if S is E and S 6= E1=E2 and S 6= id(E∗)
JSKCG; otherwise

5.4 Declarations

The .Net platform forces the declaration of each single variable with a unique
type. We could simply declare variables and function parameters with their type
erasures. However, this would generate many unnecessary casts. As an example,
if a free type variable parameter is always used as an integer it is better to declare
it as int rather than as object –its type erasure– (examples are the x, y and z

parameters of the point function in Figure 5.1). This involves a faster execution
because no cast will be generated.

For this purpose, we define the J Ktypes traversal of the AST that collects all the
possible types which a local variable may have in a function scope. Notice that
this type collection is not the output environment obtained after type checking
every function body, because our type system is flow sensitive: types bound
to type variables change while type checking is performed. The types traversal
returns an environment with all the possible types a local variable may have in a
specific function. If a variable has more than one type, a union type is then used
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to represent its least upper bound.

Definition 5.2 Given two environments Γ1 and Γ2, we define:

Γ1 ∨ Γ2 ≡ Γ in Γ← Γ1

∀ id:T ∈ Γ2, add(id, T,Γ)
∀ X:T ∈ Γ2, add(X,T,Γ)

Definition 5.3 Given a type variable or identifier x, a type T , and an environ-
ment Γ, we define:

add(x, T,Γ) ≡
{

Γ← Γ, x : T if x /∈ dom(Γ)
Γ← Γ, x : Γ(x) ∨ T otherwise

To obtain all the possible types of a local variable, it is also necessary to
know the actual C# types of the generated global functions. As an example,
the x, y and z parameters in the point function (Figure 5.1) are only used
in function invocations (lines 21 and 23). Since parameters of both point2D

and point3D were declared as int in the C# destination code, the three point

function parameters should also be declared as integers. Consequently, we define
the types traversal not only returning the Γ of local variables, but also receiving
the Γ that holds the type of every global function.

Once we obtain all the possible types of each local variable, we can pass them
as a parameter to the translation process in order to optimize the generated C#
code. Therefore, the J KCG code generation function will from now on receive a Γ
parameter. This parameter contains all the possible types of each local variable
in the current scope, plus the C# types of the previously declared functions.
We should then extend the code generation template for a program, adding the
following code to the translation scheme shown above (the statement function
–Definition 5.1– has also been extended with the appropriate Γlocal parameter):

JP = F1 . . . Fn D1 . . . Dm S1 . . . SlKCG ,
Γglobal ← ∅
Γlocal1 ← JF1Ktypes(Γglobal)
JF1KCG(Γlocal1 ∨ Γglobal)
. . .
Γlocaln ← JFnKtypes(Γglobal)
JFnKCG(Γlocaln ∨ Γglobal)
Γlocalmain

← JD1 . . . Dm S1 . . . SlKtypes(Γglobal)
JD1KCG(Γlocalmain

∨ Γglobal)
. . .
JDmKCG(Γlocalmain

∨ Γglobal)
statement(S1,Γlocalmain

∨ Γglobal)
. . .
statement(Sl,Γlocalmain

∨ Γglobal)

We now define how types of local variables are obtained, i.e., the J Ktypes traver-
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sal. Local types in declarations and statements are the union (Definition 5.2) of
the local environments they return.

JD1 . . . Dm S1 . . . Sl RKtypes(Γglobal) ,
return JD1Ktypes(Γglobal) ∨ . . . ∨ JDmKtypes(Γglobal) ∨

JS1Ktypes(Γglobal) ∨ . . . ∨ JSlKtypes(Γglobal) ∨
JRKtypes(Γglobal)

For functions, the union of their parameters, declarations and statements are
added to the local environment. Besides, the function type is added to the global
environment, taking its parameter types (and return type) from the local envi-
ronment. That is, the function type added to Γglobal holds the generated C# type
–not the one inferred by the compiler.

JF=ST id(ST1 id1...STn idn)D1...Dm S1...Sl RKtypes(Γglobal) ,
Γlocal ← id1:T1...idn:Tn ∨ JD1...Dm S1...Sl RKtypes(Γglobal)
Γglobal ← Γglobal ∨ id:T ′1 × . . .× T ′n → T ′

return Γlocal

where ΓF; ΩF ` id : T1 × . . .× Tn → T ,
Γlocal; ΩF ` id1:T ′1, . . . Γlocal; ΩF ` idn:T ′n, and

T ′ =

{
Γlocal(T ) if T ∈ dom(Γlocal)
T otherwise

The rest of the code generation templates follow the same structure, returning
the union of the Γs returned by its descendants. In addition, if one expression
must have a specific type (e.g. integer in arithmetic expressions) and the type
inferred is a type variable, that specific type is then added to a union type bound
to the type variable.

Jif E S1 . . . Sn Sn+1 . . . Sn+mKtypes(Γglobal) ,
Γlocal ← JEKtypes(Γglobal)
if ΓE; ΩE ` E : X

add(X, bool,Γlocal)
return Γlocal ∨ JS1Ktypes(Γglobal) ∨ . . . ∨ JSnKtypes(Γglobal) ∨

JSn+1Ktypes(Γglobal) ∨ . . . ∨ JSn+mKtypes(Γglobal)

Jwhile E S1 . . . SnKtypes(Γglobal) ,
Γlocal ← JEKtypes(Γglobal)
if ΓE; ΩE ` E : X

add(X, bool,Γlocal)
return Γlocal ∨ JS1Ktypes(Γglobal) ∨ ... ∨ JSnKtypes(Γglobal)
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Jreturn EKtypes(Γglobal) ,
Γlocal ← JEKtypes(Γglobal)
if tv(ΩE.rt)

add(ΩE.rt , T,Γlocal)
return Γlocal

JST idKtypes(Γglobal) , return id:ST

JidKtypes(Γglobal) , return ∅

JE1 ⊕ E2Ktypes(Γglobal) ,
Γlocal ← JE1Ktypes(Γglobal) ∨ JE2Ktypes(Γglobal)
if ΓE1 ; ΩE1 ` E1 : X1

add(X1, int,Γlocal)
if ΓE2 ; ΩE2 ` E2 : X2

add(X2, int,Γlocal)
return Γlocal

JE1=E2Ktypes(Γglobal) ,
Γlocal ← JE1Ktypes(Γglobal) ∨ JE2Ktypes(Γglobal)
if ΓE1 ; ΩE1 ` E1 : X1

add(X1, T2,Γlocal)
return Γlocal

where ΓE2 ; ΩE2 ` E2 : T2

JE1[E2]Ktypes(Γglobal) ,
Γlocal ← JE1Ktypes(Γglobal) ∨ JE2Ktypes(Γglobal)
if ΓE1 ; ΩE1 ` E1 : X1

add(X1, Array(T ),Γlocal)
if ΓE2 ; ΩE2 ` E2 : X2

add(X2, int,Γlocal)
return Γlocal

where ΓE1[E2]; ΩE1[E2] ` E1[E2] : T

JE.idKtypes(Γglobal) ,
Γlocal ← JEKtypes(Γglobal)
if ΓE; ΩE ` E : X

add(X, [id:T ],Γlocal)
return Γlocal

Jnew ST [E]([])∗Ktypes(Γglobal) , return JEKtypes(Γglobal)

Jnew {id1=E1, . . . , idn=En}Ktypes(Γglobal) ,
return JE1Ktypes(Γglobal) ∨ . . . ∨ JEnKtypes(Γglobal)

JtrueKtypes(Γglobal) = JfalseKtypes(Γglobal) = JIntLiteralKtypes(Γglobal) , return ∅
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In the invocation expression, the function type is taken from Γglobal rather than
from the inferred type, reducing the number of casts in the generated code.

Jid(E1 . . . En)Ktypes(Γglobal) ,
Γlocal ← JE1Ktypes(Γglobal) ∨ . . . ∨ JEnKtypes(Γglobal)
∀ i ∈ [1, n]

if ΓEi
; ΩEi

` Ei : Xi

add(Xi, Ti,Γlocal)
return Γlocal

where Γglobal(id) : T1 × . . .× Tn → T

Finally, we can now define the J KCG template for local variable declarations,
using the type erasures of the types inferred in the local scope.

JD = ST idKCG(Γlocal) , |T |Γlocal
id ;

where Γlocal; ΩD ` id : T

Following the same process, each function is translated to a private static

method in C#. The return type and the types of the parameters are the erasures
of the types held in the local Γ. The return statement is the last one to be
generated.

JF=ST id(ST1 id1...STn idn) D1...Dm S1...Sl RKCG(Γlocal) ,
static |T ′|Γlocal

id(|T ′1|Γlocal
id1, . . . ,|T ′n|Γlocal

idn){
object temp;

JD1KCG(Γlocal) . . . JDmKCG(Γlocal)
statement(S1,Γlocal) . . . statement(Sl,Γlocal)
JRKCG(Γlocal)

}
where Γlocal; ΩF ` id1 : T ′1, . . . ,Γlocal; ΩF ` idn : T ′n, and

Γlocal; ΩF ` id : Tp1 × . . .× Tpn → T ′

5.5 Basic Expressions

To optimize runtime performance of the generated code, we define the J KCG

traversal for expressions returning the type erasure of the generated expression.
This makes it easier to reduce the number of unnecessary casts. Following this
scheme, code generation of basic expressions is defined as follows:
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JtrueKCG(Γlocal) , true

return bool

JfalseKCG(Γlocal) , false

return bool

JIntLiteralKCG(Γlocal) , IntLiteral
return int

JidKCG(Γlocal) , id
return |T |Γlocal

where Γlocal; Ωid ` id : T

Notice that the type erasure of the identifier is taken from the local environ-
ment, returning the least upper bound of all its possible C# types in the local
scope.

Definition 5.4 Given two type erasures T1 and T2, an expression node E, and
an environment Γ, we define:

cast(T1, T2, E,Γ) ≡
((T2)JEKCG(Γ)) if T1 6= T2 and T2 6= object and

not(T2=Array and T1=T ([ ])+)
(JEKCG(Γ)) otherwise

The cast function generates code for the E expression including a cast when
necessary. In case the types are the same, or the destination is object, or an
array type is cast to the .Net Array type, the cast will not be generated.

To avoid generating unnecessary object type erasures for the types inferred
by the compiler, we use the following properties of union types:

T ∨ T −→ T

T1 ∨ T2 ≡ T2 ∨ T1

(T1 ∨ T2) ∨ T3 ≡ T1 ∨ (T2 ∨ T3) −→ T1 ∨ T2 ∨ T3

Array(T1) ∨ Array(T2) −→ Array(T1 ∨ T2)

{id1:T1, ..., idn:Tn} ∨ [idi:Ti]
i∈[1,n] −→ {id1:T1, ..., idn:Tn}

[id1:T1, ..., idn:Tn] ∨ [idi:Ti]
i∈[1,n] −→ [id1:T1, ..., idn:Tn]

If a type already exists in a union type, it is not added. Union types are
commutative, and nesting is avoided. A union of arrays is represented with an
array of unions; this way, the union of objects will not be erased to the object

type. If all the field labels in a member type exist in an object type and the
corresponding types are equal, the member type can be deleted from the union
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type. The previous property also holds for member types.

We now define the generation of arithmetic expressions (logical and relational
ones are similar). The first operand is translated to C# and, if necessary, a cast
to integer is inserted. If the type of one of the operands is dynamic and it is
not a subtype of int, an InvalidCastException will be thrown by the CLR at
runtime. The generated code does not perform extra type checking at runtime
because it is already done by the CLR.

JE1 ⊕ E2KCG(Γlocal) ,
cast(T1, int, E1,Γlocal) op⊕ cast(T2, int, E2,Γlocal)
return int

where T1 = JE1KCG(Γlocal), T2 = JE2KCG(Γlocal),
op+ = +, op− = -, op∗ = *, and op/ = /

At function invocation, each argument is converted to the corresponding pa-
rameter type. These parameter types are taken from the environment parameter
(Γlocal). Therefore, the arguments may be cast to the actual C# types of the
declared function. For instance, although the type erasure of the four parame-
ters of the point function (Figure 5.1) is object, all of them were declared as
integers. Therefore, arguments of any point function call should be cast to int,
when necessary. The return type erasure follows the same process.

Jid(E1 . . . En)KCG(Γlocal) ,
id(cast(T1, |Tp1|Γlocal

, E1,Γlocal), . . . ,cast(Tn, |Tpn|Γlocal
, En,Γlocal))

return |T |Γlocal

where T1 = JE1KCG(Γlocal), . . . , Tn = JEnKCG(Γlocal), and
Γlocal(id) = Tp1 × . . .× Tpn → T

In assignments, the type erasure of the right-hand side must be converted to
the type erasure of the left-hand side.

JE1=E2KCG(Γlocal) ,
JE1KCG(Γlocal) = cast(T2, T1, E2,Γlocal)
return T1

where T1 = JE1KCG(Γlocal), T2 = JE2KCG(Γlocal)

Objects are created by calling the default constructors of their corresponding
anonymous classes, and arrays allocation is translated into its analogous C#
syntax.
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JE = new{id1=E1, . . . , idn=En}KCG(Γlocal) ,
new AC |T1|ΓE

id1 . . . |Tn|ΓE
idn {

id1=JE1KCG(Γlocal), . . . , idn=JEnKCG(Γlocal)
}
return AC |T1|ΓE

id1 . . . |Tn|ΓE
idn

where id1 . . . idn are lexicographically ordered, and
in AC |T1|Γ id1 . . . |Tn|Γ idn, T [ ]1 . . . [ ]n is replaced with T n

JE = new ST[E1][ ] . . . [ ]KCG(Γlocal) ,
new |ST |ΓE

[JE1KCG(Γlocal)][ ] . . . [ ]

return |ST |ΓE
[ ][ ] . . . [ ]

5.6 Statements

In the if and while statements, the condition expression is checked to be bool.
The rest of the translation process is similar to the code in functions.

Jif E S1 . . . Sn Sn+1 . . . Sn+mKCG(Γlocal) ,
if ( cast(T, bool, E,Γlocal) ) {
statement(S1,Γlocal) . . . statement(Sn,Γlocal)
}
else {
statement(Sn+1,Γlocal) . . . statement(Sn+m,Γlocal)
}

where T = JEKCG(Γlocal)

Jwhile E S1 . . . SnKCG(Γlocal) ,
while ( cast(T, bool, E,Γlocal) ) {
statement(S1,Γlocal) . . . statement(Sn,Γlocal)
}

where T = JEKCG(Γlocal)

Jreturn EKCG(Γlocal) , return JEKCG(Γlocal)

5.7 Field Access

In the first scenario, the expression is an object type and the field can be obtained
directly.
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ΓE; ΩE ` E : {id1:T1, . . . , idn:Tn}

JE.idiKCG(Γlocal) ,
cast(T, |{id1:T1, . . . , idn:Tn}|ΓE

, E,Γlocal) . idi
return |Ti|ΓE

where T = JEKCG(Γlocal)

In case no type information has been gathered by the compiler, the field value
is obtained using reflection. The same happens when it is only known that it
is an object with the appropriate field, not knowing its specific type, i.e., it is a
member type.

ΓE; ΩE ` E : T T ∈ ftv(ΓE) or T = [..., idi:Ti, ...]

JE.idiKCG(Γlocal) ,

( temp=JEKCG(Γlocal)).GetType().GetField("idi").GetValue( temp)

return object

Under the same circumstances, if a field value is modified with the assign-
ment operator, the setValue helper method is used. The setValue method
simply returns the field value after the assignment. This method is necessary for
generating a valid C# expression, because the SetValue method of the .Net’s
reflection API does not return any value.

ΓE1 ; ΩE1 ` E1 : T T∈ftv(ΓE1) or T=[..., idi:Ti, ...]

JE1.idi = E2KCG(Γlocal) ,

setValue(JE1KCG(Γlocal),"idi",JE2KCG(Γglobal))
return object

In the case of static union types, the generated code is optimized using the
type information gathered statically. We use the ternary conditional operator
to dynamically check the actual type from all the possible ones inferred by the
compiler1. At runtime, this conditional code is significantly faster than reflection,
which is the implementation of dynamic typing for both C# and Visual Basic
[76, 88]. If the union type holds one (or more) free type variables, the last
alternative in the conditional expression obtains the field value using reflection.
Since this is the slowest alternative, we generate it as the last option in order to
optimize runtime performance of the generated code.

1We use reflection when the number of types in the union type is greater than 120. We
have measured that reflection is faster when the number of elements in a union type is more
than 146.
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ΓE; ΩE ` E : sta T1 ∨ ... ∨ Tn ΓE.id; ΩE.id ` E.id : T

JE.idKCG(Γlocal) ,
∀ i ∈ [1, n], Ti /∈ ftv(ΓE)

if it is not the last iteration or ∃ j∈[1, n], Tj∈ftv(ΓE){
temp=JEKCG(Γlocal) if it is the first iteration
: temp otherwise
is |Ti|ΓE

?(|T |ΓE.id
)((|Ti|ΓE

) temp).id
if ∃ i ∈ [1, n], Ti ∈ ftv(ΓE)
:(|T |ΓE.id

)( temp.GetType().GetField("id").GetValue( temp) )

return |T |ΓE.id

An example of the previous code generation template can be seen in line 32
of Figure 5.1. The type of sta is {x:int, y:int} ∨ {x:int, y:int, z:int}. In the
first iteration, the object expression (sta) is assigned to temp and it is checked
whether it is {x:int, y:int}. If so, a cast is performed and the x field is obtained.
The second condition is similar, but asking for the {x:int, y:int, z:int} type.
Since the union type does not hold any free type variable, reflection is not used
in another last condition.

When the expression type is dynamic, it should be taken into consideration
that there may be types in the union type that do not provide the expected
field. The first optimization consists in generating code only for those types that
accept the specific field access operation, using the ternary conditional operator.
A performance benefit is obtained because the generated code only checks for
those types that are applicable. The last alternative generated is reflection. At
runtime, if the field is still not found, a runtime exception will be thrown. This
may happen when dynamic references are used, because it is not guaranteed that
the field actually exists. Another final optimization is implemented when only
one possible type fulfills the condition. In this case, a direct access to the field is
generated (an InvalidCastException could be raised by the CLR).

ΓE; ΩE ` E : dyn T1 ∨ ... ∨ Tn ΓE.id; ΩE.id ` E.id : T

JE.idKCG(Γlocal) ,
if only one T

i∈[1,n]
i fullfils ΓE; ΩE ` Ti≤[id:T ′i ] (T ′i fresh) and Ti /∈ ftv(ΓE.id)

cast(TE, |Ti|ΓE
, E,Γlocal) . id

return |T |ΓE.id

else
∀ i ∈ [1, n], ΓE; ΩE ` Ti ≤ [id : T ′i ] (T ′i fresh) and Ti /∈ ftv(ΓE){

temp=JEKCG(Γlocal) if it is the first iteration
temp otherwise

is |Ti|ΓE
?(|T |ΓE.id

)((|Ti|ΓE
) temp).id :

(|T |ΓE.id
)( temp.GetType().GetField("id").GetValue( temp) )

return |T |ΓE.id

where TE = JEKCG(Γlocal)
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Line 33 in Figure 5.1 is an example of accessing the y field of a dynamic union
type. The ternary operator is the same as the previous field access (sta.x), but
reflection is used in the last condition. We use reflection because the dynamic
din reference may point to an object that does not implement the y field (it is
a dynamic union type). Finally, line 34 generates faster code generating a direct
cast because only one possible type in the union type ({x:int, y:int, z:int}) offers
the z field.

Two special generation templates were specified to translate assignments of
field access expressions when the object is a union type. Since they imply a
simple modification of the two previous translation rules, we do not depict them.

5.8 Array Indexing

In the first scenario, the expression is an array type.

ΓE1 ; ΩE1 ` E1 : Array(T )

JE1[E2]KCG(Γlocal) ,
cast(T1, T [ ], E1,Γlocal) [ cast(T2, int, E2,Γlocal) ]
return |T |ΓE1[E2]

where T1 = JE1K(Γlocal), and T2 = JE2K(Γlocal)

If the first expression is not an array, reflection is used (the GetValue method
of the .Net’s Array class). Notice that it cannot be a union of arrays because of
the way we create union types (§ 5.5). In that case, the type would be an array
of union types.

ΓE1 ; ΩE1 ` E1 : T T 6= Array

JE1[E2]KCG(Γlocal) ,
cast(T1,Array, E1,Γlocal).GetValue(cast(T2, int, E2,Γlocal))
return object

where T1 = JE1K(Γlocal), and T2 = JE2K(Γlocal)

We have overloaded the setValue method because the .Net SetValue method
does not return the assigned value. It assigns values to an array element by means
of reflection.
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Chapter 5. Erasure Semantics

ΓE1 ; ΩE1 ` E1 : T T 6= Array

JE1[E2]=E3KCG(Γlocal) ,
setValue(cast(T1,Array, E1,Γlocal), JE3K(Γlocal), cast(T2, int, E2,Γlocal))

return object
where T1 = JE1K(Γlocal), T2 = JE2K(Γlocal), andT3 = JE3K(Γlocal)
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Chapter 6

Evaluation

In this section, an assessment of the proposed hybrid static and dynamic type
system is presented. The first subsection outlines the experimental methodol-
ogy employed, programming languages and benchmarks used. The evaluation
has been divided into four scenarios: micro-benchmark, dynamically typed code,
hybrid dynamic and static typing code, and explicitly typed code. For each sce-
nario, data of the runtime performance and memory consumption for different
languages running a set of applications are presented and discussed (the whole
evaluation data can be consulted in Appendices B and C).

6.1 Methodology

In order to assess the StaDyn programming language presented in this PhD
thesis, its runtime performance and memory consumption have been compared
with the most widely-used hybrid and dynamic programming languages for the
.Net Framework 4.0, compiled with their maximum optimization options. Our
evaluation is focused on .Net languages to avoid the introduction of a bias caused
by the use of different platforms (such as Java or native applications). These are
the languages we have used in the evaluation:

– C# 4.0. The latest version of C# combines static and dynamic typing with
its new dynamic type (see Chapter 2). Its back-end is the DLR, released
as part of the .Net Framework 4.0. The DLR is a new layer over the CLR
to provide a set of services to facilitate the implementation of dynamic
languages [13].

– IronPython 2.7.3 It is an open-source implementation of the Python pro-
gramming language which is tightly integrated with the .Net Framework,
targeting the DLR. It compiles Python programs into IL (Intermediate Lan-
guage) bytecodes [89].

– Visual Basic (VB) 10: The VB programming language also supports dy-
namic typing [25]. A dynamic reference is declared with the Dim reserved
word, without setting a type. With this syntax, the compiler does not
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gather any type information statically, and type checking is performed at
runtime.

– Boo 0.9.4.9: An object-oriented programming language for the CLI with
Python inspired syntax, and a special focus on language and compiler ex-
tensibility. It is statically typed, but also provides duck typing by using its
special type duck [24].

– Cobra 0.9.1: A hybrid statically and dynamically typed programming lan-
guage. It is object-oriented and provides compile-time type inference [31].
As C#, dynamic typing is provided with a distinctive dynamic type.

– Fantom 1.0.63: Fantom is an object-oriented programming language than
generates code to the Java VM, .Net platform, and JavaScript. It is stat-
ically typed, but provides dynamic invocation of methods with a specific
message-passing operator [32].

– StaDyn. The same programs coded in C# 4.0 are simply translated into
StaDyn by replacing the dynamic reserved word with var.

All these languages compile code to the .Net framework, facilitating the com-
parison of performance results. This way, the measurements obtained show the
performance improvement of gathering type information of dynamic references
at compile time. For each language, a version of the following applications using
different kinds of typing has been measured:

– Micro-benchmark. We have developed a synthetic micro-benchmark to eval-
uate the influence of static type information gathered by the compiler.

– Pybench [90]. A Python benchmark designed to measure the performance
of standard Python implementations. Pybench is composed of a collection
of 52 tests that measure different aspects of the Python programming lan-
guage.

– Pystone. This benchmark is the Python version of the Dhrystone bench-
mark [91] and is commonly used to compare different implementations of
the Python programming language. Pystone is included in the standard
CPython distribution.

– A subset of the Java Grande benchmark [92]:

– Section 2 (Kernels). FFT, one-dimensional forward transformation of
N complex numbers; Heapsort, the heap sort algorithm over arrays of
integers; and Sparse, management of an unstructured sparse matrix
stored in compressed-row format with a prescribed sparsity structure.

– Section 3 (Large Scale Applications). RayTracer, a 3D ray tracer of
scenes that contain 64 spheres, and are rendered at a resolution of
25×25 pixels.

– Points. We have extended the StaDyn core program in Figure 4.1, filling
the list with 10,000 random two and three dimensional points. The two
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positiveX and closestToOrigin3D functions are called passing the list
reference as an argument.

Regarding the data analysis, we followed the methodology proposed in [93] to
evaluate the performance of virtual machines that provide JIT-compilation. We
followed the two step methodology defined to evaluate non-server applications:

1. We measure the elapsed execution time of running multiple times the same
program. This results in p (we have taken p = 30) measurements xi with
1 ≤ i ≤ p.

2. The confidence interval for a given confidence level (95%) is computed to
eliminate measurement errors that may introduce a bias in the evaluation.
The confidence interval is computed using the Student’s t-distribution be-
cause we took p = 30 [94]. Therefore, we compute the confidence interval
[c1, c2] as:

c1 = x− t1−α/2;p−1
s√
p

c2 = x+ t1−α/2;p−1
s√
p

Being x the arithmetic mean of the xi measurements, α = 0.05(95%), s the
standard deviation of the xi measurements, and t1−α/2;p−1 defined such that a
random variable T , that follows the Student’s t-distribution with p − 1 degrees
of freedom, obeys Pr[T ≤ t1−α/2;p−1] = 1− α/2.

The data provided (Appendices B and C) is the mean of the confidence interval
plus a percentage indicating the width of the confidence interval relative to the
mean.

To measure execution time of each benchmark invocation, we have instru-
mented the applications with code that registers the value of high-precision
time counters provided by the Windows operating system. This instrumenta-
tion calls the native function QueryPerformanceCounter of the kernel32.dll

library. This function returns the execution time measured by the operating
system Performance and Reliability Monitor [95]. We measure the difference be-
tween the beginning and the end of each benchmark invocation to obtain the
execution time of each benchmark run.

The memory consumption has been also measured following the same method-
ology to determine the memory used by the whole process. For that purpose, we
have used the maximum size of working set memory employed by the process
since it was started (the PeakWorkingSet property). The working set of a pro-
cess is the set of memory pages currently visible to the process in physical RAM
memory. These pages are resident and available for an application to be used
without triggering a page fault. The working set includes both shared and pri-
vate data. The shared data comprises the pages that contain all the instructions
that the process executes, including those from the process modules and the sys-
tem libraries. The PeakWorkingSet has been measured with explicit calls to the
services of the Windows Management Instrumentation infrastructure [96].
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All the tests were carried out on a 2.13 GHz Intel Core 2 Duo P7450 system
with 4 GB of RAM running an updated 64-bit version of Windows 7 Home
Premium SP1. The benchmarks were executed after system reboot, removing
the extraneous load, and waiting for the operating system to be loaded. If the
L1 and L2 languages run the same benchmark in T and 2.5×T milliseconds,
respectively, we say that runtime performance of L1 is 150% (or 1.5 times) higher
than L2, L1 is 150% (or 1.5 times) faster, L2 requires 150% (or 1.5 times) more
execution time than L1, or the performance benefit of L1 compared to L2 is 150%
–the same for memory consumption. To compute average percentages, factors
and orders of magnitude, we use the geometric mean.

6.2 Micro-benchmark

To evaluate the influence of static type information gathered by the compiler, we
have developed a synthetic micro-benchmark that takes the following scenarios
into account:

– Explicit static type declaration. No var references are used at all, explicitly
stating the type of every variable.

– Implicit dynamic var references declaration, when the compiler manages
to infer different possible types. Figure 4.1 is a basic example of this kind
of type inference, where the compiler infers two possible types. For this
scenario, we measure code where 1, 5, 10, 50 and 100 possible types could
be inferred statically.

– Implicit dynamic type reference declaration, when the compiler does not
infer any type at all. In this scenario, dynamic var references are used as
parameters. The argument reference randomly holds an object from 100
different types.

We measure the invocation to a polymorphic method that performs basic arith-
metical operations in a loop of 100,000 iterations. Its implementation depends
on the type of its parameters, local variables, object fields and the object itself
(it is polymorphic). Since the difference of our approach is the type information
gathered by the compiler, the primitives to measure are not really significant
because, excluding reflection services, most low-level operations in .Net are stat-
ically typed. We have coded the described program with the hybrid programming
languages appointed in § 6.1 (all but IronPython).

Table B.1 and Figure 6.1 show the execution time elapsed to run 1,000 itera-
tions of each test, expressed in microseconds. Table B.1 also includes a percentage
indicating the width of the 95% confidence interval.

The first test only uses explicit type declaration, and hence dynamic typing is
not used at all. C# offers the best runtime performance, being 10.2% faster than
StaDyn, the second fastest language. This difference is caused by the number
of optimizations that the C# production compiler performs in relation to our
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Figure 6.1: Execution time of the micro-benchmark.

implementation. However, StaDyn is 1.82%, 21.37%, 143% and 294% faster than
Cobra, VB, Boo, and Fantom, respectively, when types are explicitly declared.

The runtime performance of StaDyn when the exact single type of a var ref-
erence is inferred shows the repercussion of our approach. Runtime performance
is roughly the same as when using explicitly typed references (in fact, the code
generated is exactly the same). In this special scenario, StaDyn shows a huge
performance improvement. If the compiler infers the exact type of var references,
StaDyn is more than 92 times faster than C#. For the rest of programming lan-
guages, StaDyn is 2.28, 2.59, 2.79 and 3.36 orders of magnitude faster than Boo,
Fantom, Cobra and VB, respectively. This vast difference is caused by the lack
of static type inference of these languages for this test. When a reference is de-
clared as dynamic, every operation on that reference is performed at runtime
using reflection. The big difference between C# and VB may be caused by the
benefits of using the reflective services of the DLR (C#), compared to the reflec-
tive functions of the CLR (VB) [13]. The usage of reflective operations in the
.Net platform involves an important performance cost [88].

Figure 6.1 shows the progression of execution times when the compiler infers
1, 5, 10, 50 and 100 possible types. In order to test the association between
the number of possible types and the execution time, we carried out a regression
analysis for linear relationship between these two variables, conducting an analysis
of variance (ANOVA). Excluding VB, all the values of the Pearson coefficient were
greater than 0.8 (0.728 for VB), with levels of significance (p values) below 0.0386.
StaDyn showed the lowest slope coefficient, 0.66, compared with the 1.58, 4.05,
6.41, 8.01, and 12.67 values exhibited by Fantom, Boo, Cobra, VB and C#,
respectively. The slope coefficient represents the increase of execution time given
an increase of one possible type inferred by the compiler. Therefore, as shown in
Figure 6.1, StaDyn not only outperforms the rest of languages when the compiler
manages to infer different possible types, but also shows the smallest growth of
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Figure 6.2: Memory consumption of the micro-benchmark.

execution time relative to the number of possible types inferred.

The final comparison to be made is when the compiler gathers no static type
information at all. In this case, runtime performance is the worst in all languages,
because dynamic operations (e.g., method invocation) are performed using reflec-
tion. In this scenario, StaDyn is the fastest language, showing only 20.82% better
performance than Fantom, but being 67.3%, 69.3%, 87.9% and 116.7% faster than
Cobra, Boo, C# and VB, respectively.

6.2.1 Memory Consumption

Figure 6.2 shows the memory consumption for each language running the micro-
benchmark tests, expressed in Kbytes (Table C.1 shows the detailed results).
Using explicit type declaration, StaDyn and C# are the languages with the lowest
memory consumption values (10.256.384 and 10.374.144 Kbytes, respectively).
However VB, Boo, Cobra and Fantom require 6%, 51%, 80% and 110% more
memory than StaDyn. The runtime implemented by these languages require
more memory resources.

As in the performance evaluation, when StaDyn infers the exact single type
of a var reference, memory consumption is the same as when using explicit typed
references. Boo and VB require 14% and 34% more memory than using explicit
type declaration, respectively. C# presents the most significant increase, con-
suming 72.2% more memory, because, when running dynamically typed code,
it uses the DLR. Finally, Fantom and Cobra (which present the worst memory
consumption) hardly change it.

The line chart shows the progression of memory consumption when the com-
piler infers 1, 5, 10, 50 and 100 possible types. Excluding StaDyn, the number
of possible types inferred by the compiler does not involve a notable change in
their memory consumptions. StaDyn does not follow this pattern, requiring more
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memory resources as the number of possible types increases. This is caused by
the fact that the SSA algorithm uses a greater number of temporary variables
(see § 3.2.1), implying a higher memory consumption.

The differences between our approach and the rest of programming languages
are justified by the type information gathered by the compiler. Unlike the rest of
tested languages, StaDyn continues collecting type information when references
are set as dynamic. This is the reason why StaDyn offers the same runtime
performance with explicit type declaration and with inference of one exact single
type, involving a remarkable performance improvement. Only when the number
of possible types of a var reference is higher than 50, the memory resources
consumed by StaDyn are not the lowest ones.

6.3 Dynamically Typed Code

Different benchmarks of dynamically typed languages have been evaluated, com-
paring all the selected languages. StaDyn is run with all the references declared
as var, and compiling the code with the everythingDynamic (§ 3.2.3) option.
Consequently, the efficiency of executing dynamically typed code in each language
implementation is evaluated.

For this scenario we have taken two well-known benchmarks for the Python
programming language: Pystone and Pybench (§ 6.1). We have suppressed those
that employ particular features of Python not provided by the other languages
(i.e., tuples, dynamic code evaluation, and Python-specific built-in functions);
and those that use any input/output interaction. Therefore 31 tests of the Py-
bench benchmark were measured (see Table B.5 for a detailed list of the selected
tests in the benchmark).

In addition, an explicitly typed benchmark (Java Grande) and a hybrid static
and dynamic typing program (the Points code showed in Figure 4.1) have also
been considered. In this section, the source code of these programs have been
modified to make them fully dynamically typed (declaring all the references as
dynamic). No explicit type declarations are used at all. In the following sections
their code will be changed to make them hybrid and explicitly typed, measuring
and comparing the different scenarios for the same applications.

The default number of iterations and data for all benchmarks have been used,
except in the case of JG.RayTracer (Java Grande, section 3). For this benchmark
25 pixels instead of 150 pixels were used, due to significant execution time that
some languages use to execute it using dynamic typing.

Figure 6.3 displays the average execution time relative to StaDyn for the Py-
bench benchmark (Table B.5 shows the complete list of execution times). StaDyn
offers the best runtime performance in all test, on average is 3.71, 3.78, 11.61,
14.39, 45.54 and 73.82 times faster than IronPython, C#, Boo, VB, Fantom and
Cobra, respectively. Differences between C# and IronPython and the rest of the
languages (Boo, VB, Fantom and Cobra) may be due to the optimizations imple-
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Figure 6.3: Execution time of the Pybench benchmark.

mented by the DLR (opposed to the CLR) when dynamically typed benchmark
is executed.

The highest performance benefit obtained by StaDyn running dynamically
typed code is with the Arithmetic test of Pybench (StaDyn is at least 180 times
faster than the average measurements of the rest of languages). The second
fastest language is IronPython, which requires 18 times more execution time
than StaDyn; and the worst languages are Fantom and Cobra, that require 3.24
and 3.67 orders of magnitude more than StaDyn, respectively. This difference
is caused by how each language performs the arithmetic operations over dynam-
ically typed operands. Most languages use reflection to execute the operation at
runtime, introducing an important performance cost [88]. The DLR implements
a cache to reduce this penalty (IronPython and C#). Finally, StaDyn infers the
types of the operands at compile time, optimizing the generated code.

Test Calls (which evaluates method and function invocation § 3.2.2) is the
second test with the biggest differences in the execution time (the runtime per-
formance of StaDyn is 20 times higher than the average measurements of the
rest of languages). The three closest languages are C#, IronPython and Boo,
which require at least one order of magnitude more execution time. As in the
Arithmetic test, StaDyn manages to infer the object types used in the method
invocations, casing a significant performance improvement –the rest of languages
perform every type-checking operation at runtime.

In contrast, the Exceptions and NewInstances test present the lowest perfor-
mance differences. The lowest performance benefits of StaDyn are 0.3% in the
former test (C#) and 30% in the latter (Boo). Both tests do not evaluate any
dynamic language property, but general language features such as exception han-
dling or instance creation. The dynamically typed code used in these tests only
assigns dynamically typed variables, which are never accessed. For this reason,
the type information gathered by StaDyn does not imply a significant perfor-
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Figure 6.4: Execution time of the Java Grande benchmarks using dynamic typing.

mance improvement.

Figure 6.4 shows the average performance relative to StaDyn for the four
evaluated tests of the Java Grande benchmark (§ 6.1). As in the Pybench bench-
mark, StaDyn is the fastest language in all the tests. On average, the runtime
performance improvement of StaDyn is approximately one factor compared to
C#, around 7 times faster than IronPython and Boo, and at least one order of
magnitude than VB, Fantom and Cobra (Table B.2 details the execution time
results).

In the execution of the JG.FFT, JG.HeapSort and JG.SparseMatmult tests
(Java Grande, section 2) the measured execution times followed the same order:
StaDyn, C#, IronPython, Boo, VB, Fantom and Cobra. This is because these
algorithms, despite being different, use pretty similar language features. All of
them are small programs with a lot of arithmetic operations and multiple array
accesses using dynamically typed variables.

The execution time of JG.HeapSort shows a remarkable performance differ-
ence. For this test, StaDyn is 1.65 orders of magnitude faster than the aver-
age measurements of the rest of languages (in JG.FFT and JG.SparseMatmult
this value is 1.02 and 1.27 orders of magnitude, respectively). This difference is
because this algorithm makes extensive use of an array class field, declared as
dynamic. Since StaDyn infers the attribute type, it can use specific instructions
to access the array elements. On the other hand, the other tested languages use
reflection to access the array, implying an important performance penalty.

In the JG.SparseMatmult and JG.FFT programs, both use methods with dy-
namically typed parameters. As we have already mentioned (§ 6.2), StaDyn does
not infer type information for dynamically typed parameters. In this situation,
the same as the other languages, StaDyn uses reflection to discover the types of
these parameters at runtime. This is the reason why the performance difference
for these two tests is not as important as that for the JG.HeapSort test.
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Figure 6.5: Execution time of the dynamically typed benchmarks.

Regarding the JG.RayTracer application (Java Grande, section 3), the perfor-
mance differences are significantly lower than in the other measured applications
of Java Grande. StaDyn is 2.6 times faster than the average measurements of
the rest of languages (Boo, C#, IronPython, Fantom, VB and Cobra require
8%, 58%, 87%, 547%, 909% y 1,055% more execution time than StaDyn, respec-
tively). Throughout the code, there are multiple method invocations of dynam-
ically typed parameters. As StaDyn does not use type information inferred to
optimize the code, the use of reflection causes a lower performance benefit. How-
ever, StaDyn remains the fastest implementation, due to the benefit of gathering
type information of other expressions in the code. For example, StaDyn infers
the type of all the dynamically typed variables which are declared in the scope of
a method or a loop, and different types of fields. The results obtained in the eval-
uation of this real application confirm those obtained in the micro-benchmark,
where StaDyn remained the fastest implementation when no type information
was inferred (§ 6.2).

In order to complete the evaluation of the dynamic typing benchmarks, the
popular Pystone benchmark has also been evaluated. This benchmark, in contrast
to Pybench, does not measure specific language features, but the execution of
a whole computation intense program. Figure 6.5 shows the results of all the
dynamically typed benchmarks evaluated in this section, including Pystone (for
Java Grande section 2, the geometric mean is shown). The Pystone results are
quite similar to those of the JG.Raytracer. StaDyn is the fastest language, and
its performance benefit compared to the average value of the rest of languages is
290% (Table B.3 shows the full list of times). Pystone uses a lot of dynamically
typed parameters, the same as JG.Raytracer.

Finally, the evaluation of a modified version of the Points example shown in
Figure 4.1 is included. This hybrid static and dynamic typing code has been
modified in this section to make it fully dynamically typed. Figure 6.5 shows
that the obtained results are quite similar to the results of the JG.RayTracer and
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Figure 6.6: Memory consumption of the dynamically typed benchmarks.

the Pystone benchmarks. StaDyn performance is 305% faster than the average
performance of the rest of languages (Table B.4).

Figure 6.5 summarizes all the results of the dynamic typing benchmarks. In
the tests where the StaDyn compiler infers less type information (Java Grande
section 3, Pystone and Points), its average runtime performance benefit is around
290%. This situation occurs when the source code has many calls to methods
with the parameters declared as dynamic. For this reason, the immediate future
work will be focused on adding program specialization for this kind of functions
(see 7.1), using the type information gathered by StaDyn. We think this opti-
mization will involve a notable runtime performance improvement, since the use
of reflection causes an important performance penalty [97]. When StaDyn uses
the inferred static type to optimize the generated code (Pybench and Java Grande
section 2 benchmarks), the runtime performance of StaDyn is significantly higher
than the other languages, being of 1.2 orders of magnitude on average. This in-
fluence of the type information gathered by StaDyn on its runtime performance
benefits confirms the results obtained in the micro-benchmark (§ 6.2).

6.3.1 Memory Consumption

Figure 6.6 shows the average memory consumption relative to StaDyn, running
the dynamically typed benchmarks. StaDyn presents the lowest memory con-
sumption for every benchmark. The same as for the micro-benchmark, VB is
the closet language, requiring 16% more memory than StaDyn, on average. The
languages that use the DLR as a part of their runtime consume more memory
resources: IronPython and C# consume, on average, 83.6% and 300% more mem-
ory than StaDyn. Therefore, the call site cache implemented by the DLR [13]
provides runtime performance improvement, but also involves higher memory
consumption.
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Figure 6.7: Execution time of the Java Grande benchmarks using hybrid typing.

There are two programs where StaDyn is not the language that consumes less
memory resources. For the JG.FFT and JG.HeapSort tests, StaDyn requires
5.8% and 13.8% more memory than VB (Table C.2). These two algorithms use
many dynamically typed local variables in multiple nested scopes, causing a sig-
nificant memory consumption increase of StaDyn because of the SSA algorithm
used ( § 3.2.1).

After analyzing the results of both memory consumption and runtime perfor-
mance of dynamically typed applications, we have seen how the optimizations
implemented by the StaDyn compiler do not involve more memory consumption
–conversely to the languages that use the DLR.

6.4 Hybrid Dynamic and Static Typing Code

In this section, all the hybrid static and dynamic typing1 programming languages
that generate .Net code are compared. The same benchmarks as in the previous
section (except Pybench) have been evaluated. To evaluate the performance of
hybrid typing, their source code have been modified. We have explicitly declared
the types of class fields and parameters of methods when possible, and we have
used dynamic typing for all the local variables. Since the tests of the Pybench
benchmark have neither class fields nor method parameters, it was not included
in this evaluation.

Figure 6.7 shows the average performance runtime relative to StaDyn for the
Java Grande applications, when hybrid typing is used (Table B.6). StaDyn is
the fastest language in all the programs. On average, it is 4, 8, 16, 53 and 127
times faster than C#, Boo, VB, Fantom and Cobra, respectively.

1For the sake of brevity, we use from now on hybrid typing is used to refer to hybrid static
and dynamic typing.
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In the execution of the JG.FFT program, the runtime performance of StaDyn
is considerably better than those of the other languages, being 5 times faster than
the second one (C#) and 2.76 orders of magnitude higher than the one with the
worse performance (Cobra). This is because in this application, StaDyn infers the
type of all the dynamically typed references, and therefore it generates statically
typed code. However, the rest of languages use reflection to discover the types of
some variables, implying a significant performance penalty.

Comparing the new hybrid version of JG.FFT with the fully dynamic (Fig-
ure 6.4), the performance benefit between StaDyn and the other languages grows
significantly. Running the dynamically typed version, StaDyn is 10 times faster
than the average execution times of the rest of languages. With hybrid typing
this difference grows up to 50 times. The hybrid typing code explicitly states the
type all the parameters. This causes StaDyn to significantly improve its run-
time performance, running the hybrid version of the JG.FFT application 9 times
faster than the dynamically typed one. Although the rest of languages have also
shown an improvement, it has been lower. They are about 2 times faster with
respect to the dynamically typed version, except VB that is 7 times faster.

In the JG.HeapSort test also obtains the best runtime performance because of
static type inference. However, comparing this program with the fully dynamic
version, the performance differences between StaDyn and the other languages
have decreased. Using hybrid typing, StaDyn is 15 times faster than average
measurements of the other languages, but this value is 48 for dynamically typed
code (Figure 6.4). In hybrid typing, the class fields are explicitly typed. Since
JG.HeapSort makes extensive use of an array declared as a field, Cobra, Fantom,
VB, C# and Boo running the hybrid version 24, 18, 9, 8 and 4 times faster than
the dynamic one, respectively. However, the performance benefit of StaDyn
using hybrid typing is only 300%, because the type of the array field was already
inferred in the fully dynamic version.

In the JG.SparseMatmult program, C#, VB and Boo present the best exe-
cution times relative to StaDyn, being less than 5 factors (Cobra and Fantom
are around 2 orders of magnitude slower than StaDyn). This algorithm makes
wide use of an array local variable, declared as dynamic. While the StaDyn
compiler infers its type, the other languages do not gather that type information.
The performance difference among the rest of languages depends on how each
one performs accesses to dynamically typed arrays. Boo and VB have specific
operations to perform this operation (SetSlice and LateIndexSet, respectively),
C# uses the DLR, and Cobra and Fantom use reflection, which is the option with
the worst performance.

Boo and VB have decreased their relative execution time to StaDyn, compar-
ing this version of JG.SparseMatmult with the dynamic typing one; nevertheless,
it is the opposite for C#, Cobra and Fantom. The performance benefit of StaDyn
using hybrid versus dynamic typing is 1,100%, while that value is around 500%
for C#, Cobra and Fantom. However, Boo and VB shows 4,500% faster execution
of the hybrid version than the dynamic typing one (Figure 6.4). The difference
between the improvement obtained by StaDyn and the other languages is ex-
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Figure 6.8: Execution time of the hybrid static and dynamic typing benchmarks.

plained by a combination of the two previously described situations (the JG.FFT
and the JG.HeapSort applications). On one hand, as with the JG.FFT, StaDyn
obtains a performance benefit by using explicitly typed parameters. But on the
other hand, as with the JG.HeapSort, explicitly typed attributes does not implies
a performance benefit to StaDyn, because it already infers the type of dynamic
class fields. For the other languages, the explicit declaration of parameters and
class fields implies a performance improvement, which is more remarkable for Boo
and VB rather than for C#, Fantom and Cobra.

The final evaluation presented in Figure 6.7 is the JG.RayTracer application.
In this test, StaDyn presents the major performance difference compared to the
rest of languages, being 15, 21, 21, 126 and 364 times faster than C#, Boo, VB,
Fantom and Cobra, respectively. This huge difference is because StaDyn, unlike
the other measured languages, manages to infer the type of all the var references
in the program.

Comparing the hybrid version of JG.RayTracer with the fully dynamic one,
StaDyn shows the highest performance difference with the rest of languages.
StaDyn runs the dynamic JG.RayTracer 4.2 times faster than the average exe-
cution times of the other languages (Figure 6.4); using hybrid typing this average
increases to 48 factors (in JG.FFT it grows from 10 to 50, in JG.HeapSort it
decreases from 48 to 15, and in JG.SparseMatmult remains around 21). This dif-
ference is because the dynamic typing version of this program presents the worst
scenario for StaDyn (many dynamically typed parameters); and hybrid typing is
the best scenario, since the types of all the var references are inferred. Therefore,
the runtime performance of StaDyn with hybrid typing is 128 times faster than
with dynamic typing (versus 9 times in JG.FFT, 3 times in JG.HeapSort and 11
times in JG.SparseMatmult).

Figure 6.8 summarizes all the results of the measured hybrid typing bench-
marks. The result of the Pystone benchmark is similar to the second section
of the Java Grande test suite. StaDyn presents the best runtime performance,
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being 33 times faster than the average measurements of the rest of languages
(Table B.7). The comparison with its dynamic typing version is similar to the
JG.RayTracer application: StaDyn performance is increased in 20 times, and
the rest of languages in about two factors.

The evaluation of the Points application is also included in Figure 6.8. Al-
though StaDyn is the fastest language, in this application the performance differ-
ence compared to the rest of languages is smaller than in the previous scenarios
(Table B.8). The execution time required by Boo is 6.9% more than StaDyn,
and C# uses 57.5% more CPU time than our language. The average execution
time of all the languages (excluding StaDyn) is 3.67 times higher than StaDyn.
This application uses few dynamic variables (Figure 4.1) and therefore, gives lit-
tle room for the optimizations implemented by StaDyn (the rest of variables are
explicitly typed). Besides, most dynamic references are method parameters that
StaDyn does not optimize. Although StaDyn is able to infer the type of the
attributes, the type of dynamic parameters is obtained at runtime, as the rest
of languages. The hybrid typing version of StaDyn is 15% faster than the fully
dynamic one; the average value for the rest of languages is 50%. This lower sig-
nificance in the explicit declaration of types in StaDyn is because it infers much
type information in the dynamically typed version.

In this subsection we have seen how, when the method parameters are ex-
plicitly typed, all languages obtain a performance improvement. StaDyn is the
language with the most remarkable improvement. On average, StaDyn runs the
hybrid typing programs 10 times faster than the dynamically typed ones. Com-
paring the execution time of StaDyn with the average execution time of the rest
of languages, our language is 10 times faster running dynamically typed code, and
22 times faster executing hybrid typing applications. Hybrid programs explicitly
state the type of function parameters. The next optimization we plan to use is
to employ the inferred types of arguments to implement function specialization
optimizations § 7.1. Since this is similar to explicit type declaration, the hybrid
typing code assessment gives us an estimate of the performance benefit that could
be obtained with function specialization for functions.

6.4.1 Memory Consumption

In terms of memory usage, Figure 6.9 shows that StaDyn is the language with
the lowest memory consumption for every benchmark. VB is the second one,
consuming 21.2% more average memory resources than StaDyn. Boo, Cobra,
Fantom and C# require 43%, 48%, 93% and 93% more memory than StaDyn
(§ C.3), respectively. It should be noted that, although C# reduces the usage of
the DLR when using hybrid typing, its memory consumption relative to StaDyn
remains significant (93%).

Comparing these results with the ones obtained in the evaluation of dynamic
typing (§ 6.3.1), all languages decrease its memory consumption with hybrid
typing is used. The one with the highest memory decrease is StaDyn (20.9%)
followed by VB (15.3%), C# (14.8%), Boo (13%), Fantom (7.4%) and Cobra
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Figure 6.9: Memory consumption of the hybrid static and dynamic typing benchmarks.

(5.2%).

As with the evaluation of dynamically typed programs, the results presented
in this section confirm that the performance difference between StaDyn and the
rest of languages is not obtained by means of consuming more memory resources.

6.5 Explicitly Typed Code

In this section the same benchmarks with 100% explicitly typed code are evalu-
ated. The main objective of this evaluation is to compare the optimizations of
each compiler when no dynamic type is used. All the benchmarks in this section
have been modified explicitly declaring the types of every variable, and hence dy-
namic typing is not used at all. As the Points application cannot be implemented
without dynamic types [78], it has not been included in this evaluation.

Figure 6.10 shows the average execution time relative to StaDyn for the Java
Grande and Pystone benchmarks. C# is the fastest language for all the pro-
grams, being StaDyn the second one. C# generates code that runs, on average,
2.5% faster than the one produced by StaDyn. This difference shows how the
commercial C# compiler performs more optimizations than StaDyn when the
application is fully statically typed. StaDyn is 24%, 48%, 243% and 334% faster
than Cobra, VB, Boo and Fantom, respectively. These results are similar to the
ones obtained in the micro-benchmark, when the types of all the variables were
explicitly declared (§ 6.2).

In the Java Grande applications the runtime performance of Boo and Fantom is
appreciably worse than the other languages (Table B.9); on average, they require
414% and 735% more execution time than StaDyn (23.3% and 59.7% in the case
of Cobra and VB). The worse performance of Boo and Fantom is caused by the
dynamically typed operations used in their runtime, even when the code explicitly
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Figure 6.10: Execution time of the explicitly typed benchmarks.
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Figure 6.11: Memory consumption of the explicitly typed benchmarks.

states the static types. The other languages use the statically typed IL opcodes,
causing significant performance differences.

The Pystone benchmark shows a different scenario. This application barely
accesses to arrays or any other operation that uses the dynamic typing services of
the language runtime. Consequently, the runtime performance of all languages is
very close (Table B.10). Fantom, Cobra, VB and Boo require, respectively, 13%,
25%, 27% and 53% more execution time than StaDyn to run the Pystone bench-
mark. For this kind of code (explicitly declaring the types of all the variables),
runtime performance differences among languages are considerably reduced.
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Figure 6.12: Influence of dynamic typing on runtime performance.

6.5.1 Memory Consumption

Figure 6.11 shows memory consumption with explicit type declaration. StaDyn
and C# are the languages that consume less memory (the difference is lower than
the error interval). VB, Boo, Cobra and Fantom require 17%, 43%, 59% and 95%
more memory than StaDyn (§ C.4). This higher consumption is caused by the
additional runtime implemented by these languages –the DLR is not used when
all the references are statically typed.

When using hybrid typing, all the languages but C# consume around 10%
more memory than using explicit type declaration. C# requires 121% more
memory, due to the cost of using the DLR. StaDyn consumes 9.6% more memory
in hybrid typing due to the cost of the SSA algorithm implemented (§ 3.2.1).

6.6 Influence of Dynamic Typing on Runtime

Performance

Figure 6.12 shows the dependency of dynamic, hybrid and static typing on the
runtime performance of each programming language. The values shown in Fig-
ure 6.12 are relative to the execution time of each programming language, when all
the variables are declared explicitly with their types. Therefore, the figure shows
the cost of using dynamic (and hybrid) typing in each programming language.
This evaluation includes all the presented benchmarks but the micro-benchmark,
not included because, since it is a synthetic application, it could introduce a bias
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in the results.

StaDyn is the language that introduces the lowest performance penalty of
using both hybrid and dynamic typing. Comparing static and hybrid typing, the
cost is of 2 factors. Boo, C#, VB, Fantom and Cobra require 7, 18, 36, 41 and 571
more execution time running hybrid typing code than statically typed one. The
difference with StaDyn is because these languages do not infer type information
of dynamic references at compile time.

Finally, the statically typed programs in StaDyn run 1.4 orders of magnitude
faster than dynamically typed applications. This value is of 1.5, 1.9, 2.2, 2.5 y
3.3 orders of magnitude for Boo, C#, Fantom, VB and Cobra. StaDyn shows
the lowest difference because of the type inference implemented by the compiler.
Boo is the second one, but the reason is different: the Boo runtime uses dynamic
typing even when all the variables are explicitly declared. Namely, Boo has low
runtime performance when variables are explicitly typed, thereby involving a low
difference with hybrid and dynamic typing.
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Chapter 7

Conclusions

Gathering type information of dynamic (and hybrid) typing code at compile time
can be used to improve early type error detection and runtime performance of the
code generated, without increasing memory consumption at runtime. In order
to empirically show this, we have implemented the StaDyn programming lan-
guage, which combines static and dynamic typing in the very same programming
language. The major contribution of StaDyn is that static type inference and
type checking is performed by the compiler even over dynamic references, offering
a high level of flexibility and a better robustness and efficiency, closer to static
typing.

Most dynamic languages allow references to have different types in the same
scope. However, statically typed languages force variables to have the same type
within a scope. StaDyn offers references to have different types in the same scope
statically. We have developed a version of the SSA algorithm, which guarantees
that every reference is assigned exactly once by means of creating new temporary
references. As a result, code can be easily generated to the .Net platform, which
requires a single type for each variable.

StaDyn extends the behavior of the implicitly typed local references of the C#
3.0 programming language. In StaDyn, the type of references can be explicitly
declared, while it is also possible to use the var keyword to declare implicitly
typed references. StaDyn includes this keyword as a new type (it can be used
to declare local variables, fields, method parameters and return types), whereas
C# 3.0 only provides its use in the declaration of initialized local references. For
this purpose, we have implemented the Hindley-Milner unification algorithm to
infer the concrete type of each var reference.

The implemented type system is flow-sensitive because it takes into account the
flow context of each var reference. It gathers concrete type information knowing
all the possible types a var reference may hold. Depending on flow context,
different concrete types could be inferred (by the unification algorithm) for the
same variable. The key technique we have used to represent this concrete-type
flow-sensitive type system is union types. When a branch in the code is detected,
a union type with all the possible concreted types is inferred. The result is a
type-based alias analysis algorithm to know all the concrete types that a local
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var reference may be pointing to.

Implicitly typed parameters cannot be unified to a single concrete type, be-
cause they represent the type of any possible argument. Since they cannot be
inferred the same way as local references, we have enhanced the StaDyn type sys-
tem to be constraint-based. Method types have been extended with an ordered
set of constraints specifying the restrictions to be fulfilled by the parameters.
An abstract interpretation mechanism is implemented to perform type checking
following the method call graph, generating the appropriate set of constraints.
All the constraints defined for a var parameter are defined as an intersection
type the argument must promote to (it must be a subtype of all the types in the
intersection type). At present, the type information of var parameters gathered
by the compiler is only used for early type error detection –method specialization
has not been implemented yet.

StaDyn also provides the use of var types in class fields (attributes). Implic-
itly typed attributes extend the constraint-based type system in the sense that
concrete types var fields can be modified on each method invocation expression.
To model this behavior, we have added a new kind of assignment constraint to
the type system. Each time a value is assigned to a var attribute, an assignment
constraint is added to the method being analyzed. This constraint postpones the
unification of the concrete type of the attribute to be performed later, when an
actual object is used in the invocation. This mechanism allows static type check-
ing of var fields, improving both compile-time type error detection and runtime
performance optimizations. Besides, it extends the type-based alias analysis to
object and class attributes.

The use of var as a new type to be used in local variables, parameters and
attributes provides an added value to the StaDyn language. Since the compiler
infers all the possible concrete types for an implicitly typed variable, the type
system provides static duck typing. An operation can be passed to a var reference
when all the possible types it may be pointing to accept that operation.

StaDyn performs static type checking of both dynamic and static var refer-
ences, improving the interoperation between these two kinds of code. For this
purpose we define a new interpretation of union and intersection types. A union
type is promoted to another type when all the types in the union type are sub-
types of the given type (least upper bound). This coercion is more lenient when
the union type is dynamic: only one type in the union type must be a subtype
of the given type. A type is converted to a static intersection type when that
type is a subtype of all the types in the intersection type (greatest lower bound).
This condition is relaxed to ”‘at least one type in the intersection type”’ when
the reference is dynamic.

The dynamism of var references is not explicitly stated in the source code. It is
specified in an external XML file, that is transparently managed by the program-
ming IDE. Therefore, dynamically typed code can be converted into statically
typed one without modifying the source code, and vice versa. Consequently,
StaDyn facilitates the transition of rapid prototyping into robust and efficient
software production. By separating the dynamism concern, it is possible to cus-
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tomize the trade-off between runtime flexibility of dynamic typing and runtime
performance and robustness of static typing, minimizing the changes in the ap-
plication source code.

We have evaluated runtime performance and memory consumption of StaDyn,
and compared it with the existing hybrid and dynamic programming languages
for the .Net Framework. A set of benchmarks with dynamic, hybrid and static
typing code were executed. Running fully dynamically typed code, the average
runtime performance of StaDyn is at least 150% (up to 2.1 orders of magnitude)
faster. In the case of hybrid statically and dynamically typed code, StaDyn is
form 5 to 126 times faster than the rest of languages. StaDyn has outperformed
the rest of languages for each single program of these two kinds of benchmarks.

To measure the static optimizations performed by the compiler, we have also
executed some benchmarks where all the variables are explicitly typed (no variable
is declared as dynamic). In this scenario, StaDyn has been the second fastest
language, requiring, on average, 2.5% more execution time that C#. The rest
of languages have required from 24% to 334% more average execution time than
StaDyn. The difference is mainly caused by the fact that StaDyn does not
require any runtime.

StaDyn is the language that introduces the lowest performance penalty of
using hybrid static and dynamic typing with respect to explicit type declaration
(200%). Similarly, the difference between hybrid and dynamic typing has also
been the lowest one (10 factors). Since our programming language gathers type
information of dynamic references, the execution time of running the hybrid and
dynamic benchmarks is closer to static typing than the rest of languages –that
do not perform any type inference.

In terms of memory consumption, StaDyn has showed the lowest memory
resource requirements. The rest of languages require at least 16% and 21% more
memory for running dynamic and hybrid typing code, respectively. When all the
types are explicitly declared, memory consumption of StaDyn and C# are the
same (the rest of languages consume no less than 17% more memory). How-
ever, when one single dynamic reference is used, the DLR runtime used by C#
consumes 74% more memory than StaDyn. In the assessment performed, the
SSA algorithm implemented to assign one single type for each reference in the
generated code has not penalized the memory consumption of StaDyn.

The evaluation shows that StaDyn provides the best runtime performance
when dynamic references are used, without requiring additional memory resources
at runtime. The type information gathered by the compiler is used to generate
optimized code, avoiding the use of runtime caches to reduce the cost of using of
reflection.
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7.1 Future Work

The CLR does not provide the runtime adaptive (HotSpot) optimizations im-
plemented by Java, where server applications are dynamically recompiled and
reoptimized. As we have seen in the evaluation section, StaDyn generally out-
performs the rest of languages. In the case of var parameters reflection is used,
slowing down the execution of applications. If the number of invocations is really
high (e.g., server applications), the implementation of a call-site cache, similar
to the one provided by the DLR [13], would produce better performance results.
Therefore, we plan to offset the lack of HotSpot optimizations with the explicit
identification of server applications, for which we will implement a cache. When
the –server option is passed to the StaDyn compiler, the DLR cache will be used
instead of reflection for var parameters.

As mentioned, the use of var parameters in StaDyn is translated to reflective
code. However, StaDyn does infer type information about the arguments in
method invocation. Therefore, the immediate future work will be focused on
specializing methods with the type information of their arguments. The same as
a C++ compiler does, different versions of the same method will be generated
for a particular set of argument types, speeding up the execution of StaDyn
applications [98].

The next step in the development of StaDyn is adding structural intercession
(i.e., the capability of dynamically adapting the structure of objects and types)
to the language. Relying in the concrete type system and the type-based alias
analysis provided, the structural type representation of objects will be adapted
at compile-time. The idea is to represent object adaptation similarly to the
calculus defined by Cardelli and Mitchell for operations on records [99]. Using
a similar approach to the assignment constraints defined for the assignment of
var parameters, structural intercession could be included in the constraint-based
type system.

The structural intercession services will be supported by the ExpandoObjects,
using the DLR as the compiler back-end. At the same time, we want to use the
zRotor platform we developed as a previous research work [88]. This project
modifies a shared-source implementation of the CLI to incorporate structural
intercession as part of the JIT-compiled primitives. For these operations, zRotor

has shown a notable runtime performance improvement [97].

Once StaDyn offers structural intercession, we plan to use it in the devel-
opment of dynamic aspect-oriented applications. We have previously created a
platform that provides these services over.Net [100]. Our intention is to em-
ploy StaDyn for implementing the same application, and compare the runtime
performance results obtained [101].

Finally, we have previously done research on related fields, where we have used
widespread dynamic languages such as Python [102]. We would like to apply the
last version of our programming language to these same scenarios in the future.
Similarly, the development of applications that compute runtime changing data
turned out to be really difficult with statically typed languages [103]. Alternative
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7.1. Future Work

implementations combining static and dynamic typing could be a topic of future
research.

The current release of the StaDyn programming language, its source code, and
all the benchmarks and examples presented in this PhD thesis are freely available
at http://www.reflection.uniovi.es/stadyn.
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Appendix A

Syntax of the StaDyn
Programming Language

A.1 Syntax Specification

qualifiedIdentifier ::= IDENTIFIER ( DOT qualifiedIdentifier )?

type ::= ( ( predefinedTypeName | qualifiedIdentifier ) | VOID ) rankSpecifiers
argumentList ::= argument ( COMMA argument )*

argument ::= expression
constantExpression ::= expression
booleanExpression ::= expression
expressionList ::= expression ( COMMA expression )*

expression ::= assignmentExpression
assignmentExpression ::= conditionalExpression ( ( ASSIGN | PLUS ASSIGN | MINUS ASSIGN |

STAR ASSIGN | DIV ASSIGN | MOD ASSIGN | BIN AND ASSIGN |
BIN OR ASSIGN | BIN XOR ASSIGN | SHIFTL ASSIGN |
SHIFTR ASSIGN ) assignmentExpression )?

conditionalExpression ::= conditionalOrExpression ( QUESTION assignmentExpression
COLON conditionalExpression )?

conditionalOrExpression ::= conditionalAndExpression ( LOG OR conditionalAndExpression )*

conditionalAndExpression ::= inclusiveOrExpression ( LOG AND inclusiveOrExpression )*

inclusiveOrExpression ::= exclusiveOrExpression ( BIN OR exclusiveOrExpression )*

exclusiveOrExpression ::= andExpression ( BIN XOR andExpression )*

andExpression ::= equalityExpression ( BIN AND equalityExpression )*

equalityExpression ::= relationalExpression ( ( EQUAL | NOT EQUAL ) relationalExpression )*

relationalExpression ::= shiftExpression ( ( ( LTHAN | GTHAN | LTE | GTE )

additiveExpression )* | IS type )

shiftExpression ::= additiveExpression ( ( SHIFTL | SHIFTR ) additiveExpression )*

additiveExpression ::= multiplicativeExpression ( ( PLUS | MINUS ) multiplicativeExpression )*

multiplicativeExpression ::= unaryExpression ( ( STAR | DIV | MOD ) unaryExpression )*

unaryExpression ::= OPEN PAREN type CLOSE PAREN unaryExpression |
INC unaryExpression |
DEC unaryExpression |
PLUS unaryExpression |
MINUS unaryExpression |
LOG NOT unaryExpression |
BIN NOT unaryExpression |
primaryExpression

basicPrimaryExpression ::= literal |
IDENTIFIER
OPEN PAREN assignmentExpression CLOSE PAREN |
THIS |
BASE ( DOT IDENTIFIER | OPEN BRACK expression CLOSE BRACK ) |
newExpression

primaryExpression ::= basicPrimaryExpression ( OPEN PAREN argumentList? CLOSE PAREN |
OPEN BRACK expression CLOSE BRACK | DOT IDENTIFIER | INC | DEC )*
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newExpression ::= NEW type ( OPEN PAREN argumentList? CLOSE PAREN |
arrayInitializer | OPEN BRACK expressionList
CLOSE BRACK rankSpecifiers arrayInitializer? )

literal ::= TRUE |
FALSE |
INT LITERAL |
DOUBLE LITERAL |
CHAR LITERAL |
STRING LITERAL |
NULL

predefinedType ::= BOOL |
CHAR |
DOUBLE |
INT |
OBJECT |
STRING |
VAR

predefinedTypeName ::= BOOL |
CHAR |
DOUBLE |
INT |
OBJECT |
STRING |
VAR

statement ::= declarationStatement |
declarationStatement |
embeddedStatement

embeddedStatement ::= block |
SEMI |
expressionStatement |
selectionStatement |
iterationStatement |
jumpStatement |
tryStatement

body ::= block |
SEMI

block ::= OPEN CURLY statement∗ CLOSE CURLY
statementList ::= statement+

declarationStatement ::= localV ariableDeclaration SEMI |
localConstantDeclaration SEMI

localV ariableDeclaration ::= type localV ariableDeclarators
localV ariableDeclarators ::= localV ariableDeclarator ( COMMA localV ariableDeclarator )*

localV ariableDeclarator ::= IDENTIFIER ( ASSIGN localV ariableInitializer )?

localV ariableInitializer ::= expression |
arrayInitializer

localConstantDeclaration ::= CONST type localConstantDeclarators
localConstantDeclarators ::= localConstantDeclarator ( COMMA localConstantDeclarator )*

localConstantDeclarator ::= IDENTIFIER ASSIGN constantExpression
constantDeclarators ::= constantDeclarator ( COMMA constantDeclarator )*

constantDeclarator ::= IDENTIFIER ASSIGN constantExpression
expressionStatement ::= statementExpression SEMI
statementExpression ::= assignmentExpression
selectionStatement ::= ifStatement |

switchStatement
ifStatement ::= IF OPEN PAREN booleanExpression CLOSE PAREN

embeddedStatement elseStatement?
elseStatement ::= ELSE embeddedStatement
switchStatement ::= SWITCH OPEN PAREN expression CLOSE PAREN switchBlock
switchBlock ::= OPEN CURLY switchSections? CLOSE CURLY
switchSections ::= switchSection+

switchSection ::= switchLabels statementList
switchLabels ::= switchLabel+

switchLabel ::= CASE constantExpression COLON |
DEFAULT COLON

iterationStatement ::= whileStatement |
doStatement |
forStatement |
foreachStatement

whileStatement ::= WHILE OPEN PAREN booleanExpression CLOSE PAREN
embeddedStatement

doStatement ::= DO embeddedStatement WHILE OPEN PAREN booleanExpression
CLOSE PAREN SEMI

forStatement ::= FOR OPEN PAREN forInitializer SEMI
forCondition SEMI forIterator CLOSE PAREN embeddedStatement
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forInitializer ::= ( localV ariableDeclaration | localV ariableDeclaration |
statementExpressionList )?

forCondition ::= booleanExpression?
forIterator ::= statementExpressionList?
statementExpressionList ::= statementExpression ( COMMA statementExpression )*

foreachStatement ::= FOREACH OPEN PAREN type IDENTIFIER IN expression
CLOSE PAREN embeddedStatement

jumpStatement ::= breakStatement |
continueStatement |
returnStatement |
throwStatement

breakStatement ::= BREAK SEMI
continueStatement ::= CONTINUE SEMI
returnStatement ::= RETURN expression? SEMI
throwStatement ::= THROW expression? SEMI
tryStatement ::= TRY block catchClause∗ finallyClause?
catchClause ::= CATCH OPEN PAREN qualifiedIdentifier IDENTIFIER?

CLOSE PAREN block
finallyClause ::= FINALLY block
compilationUnit ::= usingDirectives namespaceMemberDeclarations EOF
usingDirectives ::= usingDirective∗
usingDirective ::= USING qualifiedIdentifier SEMI
namespaceMemberDeclarations ::= namespaceMemberDeclaration∗
namespaceMemberDeclaration ::= namespaceDeclaration |

modifiers typeDeclaration
typeDeclaration ::= classDeclaration |

interfaceDeclaration
namespaceDeclaration ::= NAMESPACE qualifiedIdentifier namespaceBody SEMI?
namespaceBody ::= OPEN CURLY ( modifiers typeDeclaration )* CLOSE CURLY
modifiers ::= modifier∗
modifier ::= ABSTRACT |

NEW |
OVERRIDE |
PUBLIC |
PROTECTED |
INTERNAL |
PRIVATE |
STATIC |
VIRTUAL

classDeclaration ::= CLASS IDENTIFIER classBase classBody SEMI?
classBase ::= ( COLON type ( COMMA type )* )?

classBody ::= OPEN CURLY classMemberDeclarations CLOSE CURLY
classMemberDeclarations ::= classMemberDeclaration∗
classMemberDeclaration ::= modifiers typeMemberDeclaration
typeMemberDeclaration ::= CONST type constantDeclarators SEMI |

IDENTIFIER OPEN PAREN formalParameterList? CLOSE PAREN
constructorInitializer? constructorBody |
voidAsType IDENTIFIER OPEN PAREN formalParameterList?
CLOSE PAREN methodBody |
type ( variableDeclarators SEMI | IDENTIFIER ( OPEN CURLY
accessorDeclarations CLOSE CURLY | OPEN PAREN
formalParameterList? CLOSE PAREN methodBody ) )

variableDeclarators ::= variableDeclarator ( COMMA variableDeclarator )*

variableDeclarator ::= IDENTIFIER ( ASSIGN variableInitializer )?

variableInitializer ::= expression |
arrayInitializer

returnType ::= voidAsType |
type

methodBody ::= body
formalParameterList ::= fixedParameters
fixedParameters ::= fixedParameter ( COMMA fixedParameter )*

fixedParameter ::= type IDENTIFIER
accessorDeclarations ::= getAccessorDeclaration setAccessorDeclaration? |

setAccessorDeclaration getAccessorDeclaration?
getAccessorDeclaration ::= ′get′ accessorBody
setAccessorDeclaration ::= ′set′ accessorBody
accessorBody ::= body
constructorInitializer ::= COLON ( BASE OPEN PAREN argumentList? CLOSE PAREN |

THIS OPEN PAREN argumentList? CLOSE PAREN )

constructorBody ::= body
nonArrayType ::= type
rankSpecifiers ::= rankSpecifier∗
rankSpecifier ::= OPEN BRACK COMMA∗ CLOSE BRACK
arrayInitializer ::= OPEN CURLY ( CLOSE CURLY | variableInitializerList COMMA?

CLOSE CURLY )
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variableInitializerList ::= variableInitializer ( COMMA variableInitializer )*

interfaceDeclaration ::= INTERFACE IDENTIFIER interfaceBase interfaceBody SEMI?
interfaceBase ::= ( COLON type ( COMMA type )* )?

interfaceBody ::= OPEN CURLY interfaceMemberDeclarations CLOSE CURLY
interfaceMemberDeclarations ::= interfaceMemberDeclaration∗
interfaceMemberDeclaration ::= NEW? ( voidAsType IDENTIFIER OPEN PAREN

formalParameterList? CLOSE PAREN SEMI |
type IDENTIFIER ( OPEN PAREN formalParameterList?
CLOSE PAREN SEMI |
OPEN CURLY interfaceAccessors CLOSE CURLY ) )

interfaceAccessors ::= getAccessorDeclaration setAccessorDeclaration? |
setAccessorDeclaration getAccessorDeclaration?

voidAsType ::= VOID
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A.2 Lexical Specification

KEYWORDS ::= ABSTRACT | BASE | BOOL | BREAK | CASE | CATCH | CHAR | CLASS |
CONST | CONTINUE | DEFAULT | DO | DOUBLE | ELSE | FALSE |
FINALLY | FOR | FOREACH | IF | IN | INT | INTERFACE | INTERNAL |
IS | NAMESPACE | NEW | NULL | OBJECT | OVERRIDE | PRIVATE |
PROTECTED | PUBLIC | RETURN | STATIC | STRING | SWITCH | THIS |
THROW | TRUE | TRY | USING | VAR | VIRTUAL | VOID | WHILE

IDENTIFIER ::= ‘@’? ( ‘ ’ | LETTER CHARACTER )

(

LETTER CHARACTER | DECIMAL DIGIT
)*

INT LITERAL ::= ‘0’ ( ‘x’ | ‘X’ ) HEX DIGIT + | DECIMAL DIGIT +

DOUBLE LITERAL ::= DOT
(

DECIMAL DIGIT +

(

( ‘e’ | ‘E’ ) ( ‘+’ | ‘-’ )? DECIMAL DIGIT +

)?

( ‘d’ | ‘D’ )?
)? |
DECIMAL DIGIT +

(

DOT DECIMAL DIGIT +

(

( ‘e’ | ‘E’ ) ( ‘+’ | ‘-’ )? DECIMAL DIGIT +

)? ( ‘d’ | ‘D’ )? |
( ‘e’ | ‘E’ ) ( ‘+’ | ‘-’ )? DECIMAL DIGIT + ( ‘d’ | ‘D’ )? |
( ‘d’ | ‘D’ )

)?

CHAR LITERAL ::= ‘ ‘ ’ ( LETTER CHARACTER | ESCAPED LITERAL ) ‘ ’ ’
STRING LITERAL ::= ‘ “ ’ ( LETTER CHARACTER | ESCAPED LITERAL ) * ‘ ” ’
ESCAPED LITERAL ::= ‘\\’

( ‘ ‘ ’ | ‘ “ ’ | ‘\\’ | ‘0’ | ‘a’ | ‘b’ | ‘f’ | ‘n’ | ‘r’ | ‘t’ | ‘v’ |
‘x’ HEX DIGIT ( HEX DIGIT ( HEX DIGIT HEX DIGIT ? )? )?

)

DECIMAL DIGIT ::= [0-9]
HEX DIGIT ::= [0-9] | [A-F] | [a-f]
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Appendix B

Runtime Performance Tables

B.1 Micro-benchmark

Test StaDyn Boo Cobra C# Fantom VB

Explicit 2.39 ±6.0% 5.82 ±0.0% 2.43 ±0.1% 2.14 ±0.1% 9.41 ±0.1% 2.90 ±0.1%
One 2.40 ±0.0% 461 ±0.1% 1,496 ±0.0% 224 ±0.0% 932 ±0.0% 5,442 ±0.1%
Five 24.00 ±9.2% 431 ±0.0% 1,513 ±0.0% 293 ±0.1% 971 ±0.1% 5,839 ±0.0%
Ten 45.67 ±9.1% 473 ±0.0% 1,679 ±0.1% 360 ±0.0% 1,023 ±0.1% 6,083 ±0.0%
Fifty 60.00 ±0.0% 698 ±0.1% 1,974 ±0.1% 942 ±0.1% 1,063 ±0.1% 6,190 ±0.0%
Hundred 82.67 ±9.0% 824 ±0.1% 2,130 ±0.1% 1,470 ±0.1% 1,116 ±0.1% 6,497 ±0.1%
Total 3,524 ±6.0% 8,492 ±0.0% 14,328 ±0.1% 9,504 ±0.1% 8,514 ±0.1% 37,221 ±0.1%

Table B.1: Execution times (µseconds) of the micro-benchmark.
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B.2 Dynamically Typed Code

Test StaDyn Boo Cobra C# Fantom IronPython VB

FFT 2,007 ±1.9% 16,601 ±3.4% 175,963 ±1.8% 2,897 ±5.8% 90,730 ±1.0% 5,678 ±1.4% 20,583 ±2.8%
HeapSort 3,475 ±2.0% 40,193 ±2.0% 1,427,218 ±1.9% 24,611 ±1.5% 544,441 ±1.2% 114,774 ±1.9% 169,128 ±1.3%
SparseMatmult 1,700 ±0.0% 35,551 ±2.2% 173,147 ±1.9% 2,844 ±2.0% 85,753 ±1.0% 17,374 ±2.0% 41,506 ±1.1%
RayTracer 6,240 ±0.0% 6,744 ±2.0% 72,102 ±1.9% 9,882 ±1.9% 40,404 ±1.9% 11,726 ±1.9% 63,020 ±1.0%
Total 13,421 ±1.0% 99,089 ±2.4% 1,848,430 ±1.9% 40,234 ±2.8% 761,328 ±1.3% 149,553 ±1.8% 294,236 ±1.6%

Table B.2: Execution times (ms) of the Java Grande benchmarks with dynamic typing.

Test StaDyn Boo Cobra C# Fantom IronPython VB

Pystone 1,977 ±4.8% 2,683 ±2.0% 23,940 ±1.8% 5,914 ±2.8% 9,540 ±1.9% 4,764 ±2.0% 13,060 ±1.7%

Table B.3: Execution times (ms) of the Pystone benchmark with dynamic typing.

Test StaDyn Boo Cobra C# Fantom IronPython VB

Points 171 ±0.0% 247 ±2.0% 2,554 ±1.9% 303 ±4.0% 1,180 ±2.0% 314 ±2.9% 1,575 ±0.0%

Table B.4: Execution times (ms) of the Points application with dynamic typing.
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Test StaDyn Boo Cobra C# Fantom IronPython VB

Aritmethic.SimpleFloatArithmetic 31 ±0.0% 2,021 ±2.0% 33,633 ±1.8% 1,063 ±1.8% 34,191 ±1.7% 437 ±0.0% 707 ±3.8%
Arithmetic.SimpleIntegerArithmetic 15 ±0.0% 2,180 ±2.0% 149,866 ±1.9% 1,034 ±2.0% 31,987 ±2.0% 338 ±2.0% 801 ±1.9%
Arithmetic.SimpleIntFloatArithmetic 15 ±0.0% 2,200 ±2.0% 148,232 ±1.6% 1,030 ±1.9% 34,424 ±1.9% 330 ±2.2% 795 ±1.9%
Calls.FunctionCalls 15 ±0.0% 171 ±0.0% 159 ±6.1% 705 ±1.9% 640 ±0.0% 309 ±5.6% 187 ±0.0%
Calls.MethodCalls 157 ±1.9% 1,154 ±0.0% 8,502 ±1.7% 631 ±1.9% 4,914 ±0.0% 2,215 ±0.0% 26,634 ±1.1%
Calls.Recursion 121 ±3.6% 1,950 ±0.0% 64,401 ±1.9% 561 ±2.2% 12,694 ±1.9% 414 ±1.9% 624 ±0.0%
Constructs.ForLoops 698 ±2.1% 5,335 ±0.0% 122,810 ±1.7% 4,695 ±1.3% 120,846 ±1.8% 908 ±1.7% 10,384 ±1.4%
Constructs.IfThenElse 46 ±0.0% 1,963 ±2.3% 717 ±0.0% 373 ±3.4% 1,557 ±1.9% 250 ±0.0% 421 ±0.0%
Constructs.NestedForLoops 507 ±3.3% 3,691 ±1.9% 82,789 ±1.4% 4,087 ±1.5% 172,866 ±1.5% 834 ±2.9% 59,820 ±0.8%
Dicts.DictCreation 452 ±0.0% 907 ±2.0% 23,852 ±1.2% 1,418 ±1.9% 5,954 ±0.6% 1,231 ±9.4% 6,006 ±1.5%
Dicts.DictWithFloatKeys 738 ±4.3% 5,670 ±2.8% 36,418 ±1.9% 1,490 ±1.6% 53,336 ±1.6% 1,747 ±1.8% 10,522 ±1.4%
Dicts.DictWithIntegerKeys 489 ±2.5% 7,413 ±2.7% 41,832 ±1.3% 1,709 ±1.8% 28,330 ±1.0% 1,314 ±1.6% 13,973 ±1.9%
Dicts.DictWithStringKeys 856 ±1.8% 6,700 ±2.0% 39,257 ±1.1% 1,794 ±0.0% 29,164 ±1.6% 1,342 ±0.0% 13,973 ±1.8%
Dicts.SimpleDictManipulation 515 ±2.7% 8,216 ±1.9% 69,739 ±1.6% 655 ±0.0% 32,194 ±2.0% 1,689 ±1.3% 47,632 ±1.2%
Exceptions.TryExcept 78 ±0.0% 296 ±0.0% 2,021 ±2.0% 67 ±8.4% 671 ±0.0% 647 ±1.9% 280 ±2.7%
Exceptions.TryRaiseExcept 1,591 ±1.5% 2,050 ±1.5% 1,884 ±1.5% 1,856 ±0.0% 2,179 ±1.7% 3,900 ±0.0% 1,669 ±0.0%
Instances.CreateInstances 358 ±0.0% 686 ±3.0% 11,103 ±2.0% 1,204 ±3.2% 2,955 ±1.8% 4,891 ±2.0% 819 ±2.0%
Lists.ListSlicing 89 ±5.6% 1,482 ±0.0% 2,367 ±1.7% 256 ±2.3% 698 ±2.0% 3,034 ±1.8% 2,932 ±0.0%
Lists.SimpleListManipulation 889 ±0.0% 5,271 ±1.9% 38,520 ±1.7% 3,151 ±0.0% 53,907 ±2.0% 883 ±2.0% 14,363 ±1.8%
Lookups.NormalClassAttribute 109 ±0.0% 98 ±9.4% 377 ±1.9% 265 ±0.0% 1,659 ±1.9% 2,274 ±1.9% 210 ±2.8%
Lookups.NormalInstanceAttribute 132 ±4.5% 3,801 ±1.0% 14,149 ±0.0% 1,063 ±1.5% 21,473 ±0.7% 2,145 ±2.0% 63,601 ±1.6%
NewInstances.CreateNewInstances 558 ±6.6% 727 ±1.8% 11,320 ±2.0% 1,180 ±1.9% 2,782 ±1.3% 12,888 ±1.9% 909 ±3.9%
Numbers.CompareFloats 93 ±0.0% 2,139 ±1.9% 77,412 ±1.9% 1,388 ±1.8% 1,196 ±2.0% 406 ±0.0% 943 ±2.4%
Numbers.CompareFloatsIntegers 78 ±0.0% 1,631 ±1.9% 61,547 ±2.0% 1,174 ±1.8% 48,068 ±2.0% 339 ±2.2% 727 ±3.0%
Numbers.CompareIntegers 296 ±0.0% 3,469 ±1.7% 108,850 ±0.9% 1,774 ±1.2% 2,803 ±1.3% 380 ±2.0% 1,318 ±1.9%
Strings.CompareStrings 4,056 ±0.0% 6,583 ±3.9% 102,018 ±1.8% 5,627 ±1.8% 28,699 ±1.8% 5,340 ±1.8% 159,975 ±1.3%
Strings.ConcatStrings 2,297 ±1.9% 1,985,232 ±1.7% 48,691 ±1.5% 3,010 ±1.8% 31,351 ±1.0% 2,814 ±1.8% 3,322 ±0.0%
Strings.CreateStringsWithConcat 1,045 ±0.0% 1,948,555 ±1.7% 45,353 ±1.6% 1,330 ±1.6% 27,866 ±2.0% 1,323 ±2.0% 1,591 ±0.0%
Strings.StringMappings 1,263 ±0.0% 2,320 ±1.8% 5,358 ±1.4% 1,497 ±0.0% 11,005 ±1.7% 812 ±1.9% 21,461 ±1.5%
Strings.StringSlicing 499 ±0.0% 5,080 ±2.0% 40,436 ±0.0% 1,528 ±0.0% 39,482 ±2.0% 902 ±2.0% 110,003 ±1.7%
Strings.StringPredicates 40 ±0.0% 481 ±4.1% 1,548 ±1.9% 807 ±1.9% 14,969 ±2.0% 967 ±0.0% 2,948 ±1.7%
Total 18,126 ±1.4% 4,019,470 ±2.0% 1,395,162 ±1.6% 48,422 ±1.7% 854,859 ±1.5% 57,303 ±1.9% 579,550 ±1.5%

Table B.5: Execution times (ms) of the Pybench benchmark.
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B.3 Hybrid Dynamic and Static Typing Code

Test StaDyn Boo Cobra C# Fantom VB

FFT 205 ±8.8% 5,899 ±2.0% 118,652 ±1.9% 1,281 ±1.9% 47,783 ±1.7% 2,569 ±1.8%
HeapSort 904 ±3.0% 8,127 ±0.0% 56,994 ±1.2% 2,750 ±1.4% 28,595 ±0.8% 16,338 ±1.2%
SparseMatmult 140 ±0.0% 816 ±1.9% 44,912 ±0.0% 561 ±0.0% 16,006 ±1.0% 820 ±2.0%
RayTracer 48 ±0.0% 1,099 ±2.0% 17,655 ±1.0% 793 ±2.0% 6,143 ±1.5% 1,093 ±1.9%
Total 1,297 ±2.9% 15,940 ±1.5% 238,212 ±1.0% 5,386 ±1.3% 98,527 ±1.3% 20,820 ±1.7%

Table B.6: Execution times (ms) of the Java Grande benchmarks with hybrid typing.

Test StaDyn Boo Cobra C# Fantom VB

Pystone 87 ±6.7% 1,137 ±1.9% 11,576 ±1.9% 735 ±2.3% 3,795 ±1.7% 6,063 ±1.8%

Table B.7: Execution times (ms) of the Pystone benchmark with hybrid typing.

Test StaDyn Boo Cobra C# Fantom VB

Points 148 ±5.2% 158 ±5.6% 1,107 ±0.0% 233 ±0.0% 759 ±2.0% 1,531 ±2.0%

Table B.8: Execution times (ms) of the Points application with hybrid typing.

92



B.4. Explicitly Typed Benchmarks

B.4 Explicitly Typed Benchmarks

Test StaDyn Boo Cobra C# Fantom VB

FFT 31 ±0.0% 296 ±0.0% 33 ±8.0% 31 ±0.0% 31 ±0.0% 67 ±8.4%
HeapSort 374 ±0.0% 3,588 ±0.0% 336 ±3.3% 312 ±0.0% 16,526 ±1.1% 378 ±5.6%
SparseMatmult 46 ±0.0% 436 ±0.0% 48 ±8.4% 46 ±0.0% 827 ±0.0% 48 ±6.8%
RayTracer 17 ±0.0% 46 ±2.8% 25 ±1.6% 16 ±0.0% 125 ±0.0% 32 ±5.5%
Total 468 ±0.0% 4,366 ±0.7% 443 ±5.3% 405 ±0.0% 17,508 ±0.3% 526 ±6.6%

Table B.9: Execution times (ms) of the Java Grande benchmarks with explicit typing.

Test StaDyn Boo Cobra C# Fantom VB

Pystone 92 ±7.8% 75 ±0.0% 60 ±0.0% 68 ±6.9% 60 ±0.0% 77 ±8.7%

Table B.10: Execution times (ms) of the Pystone benchmark with explicit typing.
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Appendix C

Memory Consumption Tables

C.1 Micro-benchmark

Test StaDyn Boo Cobra C# Fantom VB

Explicit 10,256 ±1% 15,503 ±1% 18,472 ±1% 10,374 ±2% 21,590 ±0% 10,863 ±0%
One 10,278 ±2% 17,805 ±0% 18,391 ±1% 17,923 ±1% 21,731 ±1% 14,590 ±1%
Five 10,454 ±2% 17,841 ±2% 18,454 ±2% 18,241 ±1% 21,748 ±1% 14,795 ±2%
Ten 10,482 ±2% 17,893 ±0% 18,439 ±1% 18,440 ±2% 21,731 ±1% 14,811 ±2%
Fifty 14,236 ±2% 18,229 ±1% 18,630 ±1% 18,706 ±1% 21,919 ±1% 14,946 ±1%
Hundred 22,026 ±1% 18,394 ±2% 18,945 ±1% 19,494 ±2% 22,158 ±1% 14,903 ±2%
No Inference 18,817 ±0% 18,140 ±1% 18,799 ±0% 18,306 ±2% 22,166 ±0% 14,862 ±1%
Total 96,549 ±1% 123,806 ±1% 130,130 ±1% 121,485 ±1% 153,043 ±1% 99,769 ±1%

Table C.1: Memory consumption (Kbytes) of the micro-benchmark.

95



A
p
p

en
d
ix

C
.

M
em

ory
C

on
su

m
p
tion

T
ab

les

C.2 Dynamically Typed Code

Test StaDyn Boo Cobra C# Fantom IronPython VB

JG.SparseMatmultBench 17,289 ±0.0% 22,970 ±1.0% 22,995 ±0.7% 29,215 ±1.9% 45,957 ±0.2% 137,680 ±9.7% 20,705 ±1.3%
JG.HeapSortBench 20,634 ±0.5% 22,187 ±0.6% 22,143 ±0.0% 28,395 ±1.9% 38,179 ±0.8% 53,610 ±1.8% 19,487 ±1.5%
JG.FFTBench 19,520 ±0.8% 19,847 ±0.9% 20,748 ±0.2% 36,641 ±0.1% 23,388 ±0.0% 65,293 ±1.7% 17,142 ±1.4%
JG.RayTracerBench 14,944 ±1.7% 18,459 ±1.0% 18,599 ±1.8% 29,913 ±1.9% 23,009 ±0.8% 69,849 ±0.1% 16,153 ±1.9%
Total 72,387 ±0.8% 83,463 ±0.9% 84,485 ±0.7% 124,164 ±1.4% 130,533 ±0.4% 326,431 ±3.3% 73,487 ±1.5%

Table C.2: Memory consumption (Kbytes) of the Java Grande benchmarks with dynamic typing.

Test StaDyn Boo Cobra C# Fantom IronPython VB

Pystone 13,294 ±0.8% 18,603 ±2.0% 18,629 ±2.0% 26,283 ±1.7% 22,427 ±1.1% 49,445 ±0.7% 15,772 ±1.2%

Table C.3: Memory consumption (Kbytes) of the Pystone benchmarks with dynamic typing.

Test StaDyn Boo Cobra C# Fantom IronPython VB

Points 16,011 ±0.9% 25,942 ±0.1% 22,002 ±1.8% 26,608 ±1.1% 22,559 ±0.8% 53,387 ±2.0% 21,996 ±1.1%

Table C.4: Memory consumption (Kbytes) of the Points example with dynamic typing.
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Test StaDyn Boo Cobra C# Fantom IronPython VB

Arithmetic.SimpleFloatArithmetic 12,757 ±0.9% 16,671 ±1.3% 18,398 ±1.9% 27,249 ±0.7% 22,275 ±0.6% 54,295 ±2.0% 14,584 ±1.9%
Arithmetic.SimpleIntegerArithmetic 12,678 ±0.8% 16,850 ±0.7% 18,545 ±1.9% 27,199 ±1.8% 22,225 ±1.7% 51,474 ±1.8% 14,552 ±1.7%
Arithmetic.SimpleIntFloatArithmetic 12,733 ±1.9% 16,818 ±1.3% 18,485 ±1.2% 27,224 ±0.1% 21,797 ±1.2% 51,346 ±1.8% 14,499 ±1.9%
Calls.FunctionCalls 11,403 ±1.9% 16,634 ±0.4% 20,129 ±0.5% 23,721 ±0.6% 21,780 ±0.2% 51,697 ±0.9% 13,187 ±2.0%
Calls.MethodCalls 12,310 ±1.9% 17,800 ±1.7% 19,829 ±1.1% 25,082 ±0.1% 22,256 ±0.2% 55,411 ±1.5% 21,978 ±0.5%
Calls.Recursion 12,003 ±1.5% 16,935 ±2.0% 18,635 ±0.2% 19,315 ±1.0% 21,727 ±0.8% 53,219 ±1.4% 14,369 ±1.4%
Constructs.ForLoops 13,062 ±2.0% 16,930 ±1.2% 21,634 ±1.5% 29,184 ±1.3% 22,088 ±1.5% 52,079 ±1.8% 15,470 ±1.6%
Constructs.IfThenElse 12,790 ±0.3% 16,821 ±1.8% 18,578 ±1.4% 19,243 ±0.4% 21,854 ±0.2% 58,287 ±1.6% 14,576 ±1.2%
Constructs.NestedForLoops 12,453 ±2.0% 16,876 ±1.5% 18,585 ±1.7% 21,923 ±1.1% 22,078 ±1.2% 45,743 ±2.0% 15,488 ±1.0%
Dicts.DictCreation 12,609 ±2.0% 16,364 ±1.3% 21,785 ±1.2% 26,792 ±0.8% 22,002 ±0.5% 52,218 ±0.5% 15,079 ±0.2%
Dicts.DictWithFloatKeys 12,317 ±1.2% 17,558 ±1.5% 19,819 ±0.7% 24,973 ±1.1% 22,096 ±1.2% 54,886 ±2.0% 14,646 ±1.6%
Dicts.DictWithIntegerKeys 12,444 ±1.2% 17,566 ±0.2% 19,147 ±1.9% 24,750 ±0.7% 22,217 ±2.0% 50,685 ±1.2% 14,668 ±1.2%
Dicts.DictWithStringKeys 12,800 ±2.0% 17,516 ±1.7% 18,602 ±0.2% 24,792 ±1.8% 22,188 ±2.0% 50,737 ±0.6% 15,213 ±1.9%
Dicts.SimpleDictManipulation 12,586 ±2.1% 17,831 ±1.6% 20,728 ±1.0% 23,322 ±1.2% 22,199 ±1.8% 53,715 ±1.2% 15,869 ±1.7%
Exceptions.TryExcept 20,214 ±0.7% 18,421 ±1.8% 18,651 ±0.2% 18,822 ±1.6% 22,110 ±1.4% 106,167 ±1.9% 24,343 ±1.5%
Exceptions.TryRaiseExcept 12,467 ±2.0% 17,189 ±1.9% 18,614 ±0.2% 19,030 ±1.6% 21,262 ±1.0% 50,803 ±0.4% 14,846 ±1.2%
Instances.CreateInstances 12,174 ±1.8% 17,087 ±1.2% 18,522 ±2.0% 19,317 ±0.8% 21,965 ±0.2% 76,612 ±0.7% 14,580 ±1.7%
Lists.ListSlicing 12,350 ±1.5% 19,626 ±0.6% 18,633 ±1.2% 23,388 ±1.1% 22,157 ±0.8% 45,962 ±1.7% 16,050 ±1.1%
Lists.SimpleListManipulation 16,971 ±2.3% 17,758 ±1.8% 20,120 ±1.9% 36,774 ±1.2% 22,267 ±1.0% 52,253 ±1.5% 16,200 ±1.2%
Lookups.NormalClassAttribute 12,767 ±0.8% 15,538 ±1.7% 18,573 ±1.5% 21,830 ±0.8% 22,075 ±1.2% 53,040 ±1.7% 14,508 ±0.5%
Lookups.NormalInstanceAttribute 13,906 ±1.6% 17,594 ±1.9% 18,395 ±0.4% 28,930 ±0.0% 22,110 ±1.0% 52,837 ±1.9% 15,337 ±0.9%
NewInstances.CreateNewInstances 12,313 ±2.0% 17,076 ±1.9% 18,492 ±0.7% 19,478 ±0.8% 22,166 ±0.8% 78,254 ±1.0% 14,617 ±1.3%
Numbers.CompareFloats 12,487 ±0.3% 16,785 ±0.0% 18,548 ±1.7% 32,969 ±1.0% 22,190 ±1.8% 54,714 ±1.6% 14,896 ±1.7%
Numbers.CompareFloatsIntegers 12,289 ±1.9% 16,791 ±1.9% 18,627 ±0.6% 32,909 ±0.7% 22,276 ±0.2% 54,651 ±1.1% 14,819 ±1.7%
Numbers.CompareIntegers 12,184 ±0.3% 16,841 ±0.7% 18,510 ±1.2% 32,870 ±0.2% 22,036 ±1.0% 54,468 ±1.8% 14,875 ±1.6%
Strings.CompareStrings 12,421 ±1.9% 18,164 ±0.7% 19,127 ±1.2% 28,680 ±1.3% 22,133 ±1.8% 56,662 ±1.8% 17,177 ±1.9%
Strings.ConcatStrings 12,509 ±1.9% 17,701 ±1.9% 18,630 ±1.2% 24,353 ±0.9% 22,136 ±1.0% 55,738 ±1.9% 15,370 ±1.6%
Strings.CreateStringsWithConcat 12,482 ±0.7% 17,828 ±0.2% 18,495 ±0.6% 23,247 ±1.4% 22,124 ±1.5% 55,989 ±2.0% 14,672 ±1.8%
Strings.StringMappings 12,391 ±1.8% 18,238 ±1.5% 18,597 ±1.3% 24,549 ±0.7% 22,163 ±0.7% 50,838 ±0.5% 15,368 ±1.1%
Strings.StringSlicing 12,430 ±1.8% 18,147 ±1.1% 18,979 ±0.6% 27,263 ±1.3% 22,202 ±0.8% 54,457 ±1.9% 17,465 ±1.4%
Strings.StringPredicates 12,420 ±0.9% 17,852 ±0.8% 18,594 ±1.3% 24,451 ±0.2% 22,263 ±1.0% 53,346 ±1.4% 15,460 ±0.7%
Total 399,722 ±1.5% 537,805 ±1.3% 591,006 ±1.1% 783,629 ±0.9% 684,419 ±1.0% 1,742,581 ±1.4% 484,762 ±1.4%

Table C.5: Memory consumption (Kbytes) of the Pybench benchmark.
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C.3 Hybrid Dynamic and Static Typing Code

Test StaDyn Boo Cobra C# Fantom VB

JG.SparseMatmultBench 16,941 ±1.9% 21,902 ±1.7% 22,762 ±1.5% 25,313 ±0.6% 44,741 ±0.8% 19,575 ±1.3%
JG.HeapSortBench 16,208 ±0.2% 22,046 ±1.9% 22,010 ±1.8% 24,154 ±0.8% 43,651 ±0.3% 19,407 ±0.4%
JG.FFTBench 13,701 ±2.0% 18,973 ±0.2% 19,855 ±0.8% 26,842 ±1.9% 28,682 ±2.0% 16,065 ±0.0%
JG.RayTracerBench 11,732 ±1.9% 18,222 ±0.6% 18,334 ±1.8% 28,291 ±0.5% 22,798 ±0.8% 15,712 ±1.3%
Total 58,583 ±1.5% 81,143 ±1.1% 82,961 ±1.5% 104,600 ±1.0% 139,873 ±1.0% 70,759 ±0.7%

Table C.6: Memory consumption (Kbytes) of the Java Grande benchmarks with hybrid typing.

Test StaDyn Boo Cobra C# Fantom VB

Pystone 12,222 ±0.0% 18,240 ±0.8% 18,381 ±0.7% 25,440 ±0.1% 22,364 ±0.2% 15,438 ±1.9%

Table C.7: Memory consumption (Kbytes) of the Pystone benchmark with hybrid typing.

Test StaDyn Boo Cobra C# Fantom VB

Points 12,493 ±0.3% 16,679 ±0.4% 18,420 ±0.0% 20,271 ±0.5% 15,262 ±0.2% 13,244 ±1.8%

Table C.8: Memory consumption (Kbytes) of the Points application with hybrid typing.
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C.4 Explicitly Typed Benchmarks

Test StaDyn Boo Cobra C# Fantom VB

JG.SparseMatmultBench 15,112 ±1.7% 20,544 ±1.5% 21,940 ±1.5% 15,177 ±1.7% 44,042 ±0.1% 15,933 ±1.2%
JG.HeapSortBench 14,452 ±0.8% 19,649 ±1.6% 21,243 ±1.8% 14,302 ±1.5% 57,184 ±1.4% 15,077 ±0.7%
JG.FFTBench 11,882 ±0.6% 16,984 ±0.2% 18,721 ±1.6% 11,736 ±0.8% 26,926 ±1.6% 15,356 ±1.0%
JG.RayTracerBench 10,707 ±0.0% 15,841 ±0.7% 18,452 ±0.5% 10,726 ±2.0% 17,037 ±0.6% 13,169 ±1.7%
Total 52,154 ±0.8% 73,018 ±1.0% 80,356 ±1.4% 51,941 ±1.5% 145,190 ±0.9% 59,535 ±1.1%

Table C.9: Memory consumption (Kbytes) of the Java Grande benchmarks with explicit typing.

Test StaDyn Boo Cobra C# Fantom VB

Pystone 11,684 ±0.3% 16,820 ±2.0% 18,418 ±0.2% 11,677 ±1.9% 15,376 ±1.4% 13,782 ±1.1%

Table C.10: Memory consumption (Kbytes) of the Pystone benchmark with explicit typing.
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Appendix D

Publications

The research work of this PhD thesis has been published in different journals and
conferences. The following publications are somehow derived from this PhD.

– Articles published in journal in the Journal Citation Reports :

1. Union and intersection types to support both dynamic and static typ-
ing. Francisco Ortin, Miguel Garcia. Information Processing Letters,
Volume 111, Issue 6, 2011.

2. Applying dynamic separation of aspects to distributed systems secu-
rity: a case study. Miguel Garcia, David Llewellyn-Jones, Francisco
Ortin, Madjid Merabti. IET Software, Volume 6, Issue 3, 2012.

3. Including both static and dynamic typing in the same programming
language. Francisco Ortin, Daniel Zapico, J. Baltasar G. Perez-Schofield,
Miguel Garcia. IET Software, Volume 4, Issue 4, 2010.

4. On the suitability of dynamic languages for hot-reprogramming a robotics
framework: a Python case study. Francisco Ortin, Sheila Mendez, Vi-
cente Garcia-Diaz and Miguel Garcia. Software Practice and Experi-
ence, DOI: 10.1002/spe.2162. To be published; accepted on October,
2012.

5. Towards a practical solution for data grounding in a semantic web ser-
vices environment. Miguel Garcia, Jose M. Alvarez, Diego Berrueta,
Luis Polo, Jose E. Labra, Patricia Ordoñez. Journal of Universal Com-
puter Science, Volume 18, Issue 11, 2012.

– Articles published other journals:

1. A Programming language that combines the benefits of static and
dynamic Typing. Francisco Ortin, Miguel Garcia. Communications
in Computer and Information Science, Volume 170. ISSN: 1865-0929.
Springer Verlag. 2013.

2. Achieving multiple dispatch in hybrid statically and dynamically typed
languages. Francisco Ortin, Miguel Garcia, Jose M. Redondo, Jose
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Quiroga. Advances in Intelligent Systems and Computing, Volume
206, ISSN: 2194-5357. Springer Verlag. 2013.

3. Modularizing different responsibilities into separate parallel hierar-
chies. Francisco Ortin, Miguel Garcia. Communications in Computer
and Information Science, Volume 275. ISSN: 1865-0929. Springer
Verlag. 2013.

– Articles presented in conferences:

1. A programming language to facilitate the transition from rapid pro-
totyping to efficient software production. Francisco Ortin, Daniel Za-
pico, Miguel Garcia. 5th International Conference on Software and
Data Technologies (ICSOFT), Athens (Greece). July 2010.

2. A performance cost evaluation of aspect weaving. Miguel Garcia, Fran-
cisco Ortin, David Llewellyn-Jones, Madjid Merabti. ACM 36th Aus-
tralian Computer Science Conference (ACSC), Adelaide, (Australia).
January 2013.

3. Supporting Dynamic and Static Typing by means of Union and Inter-
section Types. Francisco Ortin, Miguel Garcia. IEEE International
Conference on Progress in Informatics and Computing (PIC), Shang-
hai (China). December 2010.

4. A type safe design to allow the separation of different responsibilities
into parallel hierarchies. Francisco Ortin, Miguel Garcia. 6th Inter-
national Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE), Bejing (China). June 2011.

5. Computational reflection in order to support context-awareness in a
robotics framework. Sheila Mendez, Francisco Ortin, Miguel Garcia,
Vicente Garcia-Diaz. 23rd International Conference on Software En-
gineering & Knowledge Engineering (SEKE), Miami, Florida (USA).
July 2011.

6. Separating different responsibilities into parallel hierarchies. Francisco
Ortin, Miguel Garcia. ACM 4th International C* Conference on Com-
puter Science and Software Engineering (C3S2E), Montreal (Canada).
May 2011
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