
IDE Support to Facilitate the Transition from

Rapid Prototyping to Robust Software Production
Francisco Ortin

University of Oviedo
C/Calvo Sotelo s/n, 33007, Oviedo, Spain

ortin@lsi.uniovi.es

Anton Morant
Wolfson College, University of Oxford

Linton Road, Oxford, UK, OX26UD
anton.morant@comlab.ox.ac.uk

ABSTRACT

Dynamic languages are becoming increasingly popular for differ-
ent software development scenarios such as rapid prototyping
because of the flexibility and agile interactive development they
offer. The benefits of dynamic languages are, however, counte-
racted by many limitations produced by the lack of static typing.
In order to obtain the benefits of both approaches, some pro-
gramming languages offer a hybrid dynamic and static type sys-
tem. The existing IDEs for these hybrid typing languages do not
provide any type-based feature when dynamic typing is used,
lacking important IDE facilities offered for statically typed code.
We have implemented a constraint-based type inference system
that gathers type information of dynamic references at compile
time. Using this type information, we have extended a profession-
al IDE to offer those type-based features missed for dynamically
typed code. Following the Separation of Concerns principle, the
IDE has also been customized to facilitate the conversion of dy-
namically typed code into statically typed one, and vice versa.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Classifications –
C#, object-oriented languages; D.2.6 [Software Engineering]:
Programming Environments – integrated environments

General Terms

Languages

Keywords

Hybrid dynamic and static typing, IDE support, type inference,
autocomplete, separation of concerns.

1. INTRODUCTION
Dynamic languages have recently turned out to be really suitable
for specific scenarios such as rapid prototyping, Web develop-
ment, interactive programming, dynamic aspect-oriented pro-
gramming, and any kind of runtime adaptable or adaptive soft-
ware. Common features of dynamic languages are meta-
programming, reflection, mobility, and dynamic reconfiguration
and distribution. Their ability to address quickly changing soft-
ware requirements and their fast interactive edit-debug-test devel-
opment method make dynamic languages ideal for the rapid crea-
tion of prototypes.

Due to the recent success of dynamic languages, other statically

typed ones −such as Java or C#− are gradually incorporating more
dynamic features into their platforms. Taking C# as an example,

the platform was initially released with introspective and low-
level dynamic code generation services. Version 2.0 included

dynamic methods and the CodeDom namespace to generate the
structure of a high-level source code document. The Dynamic
Language Runtime (DLR) adds to the .NET platform a set of
services to facilitate the implementation of dynamic languages. A

new dynamic type has been included in C# 4.0 to support dynam-

ically typed code. When a reference is declared as dynamic, the
compiler performs no static type checking, making all the type
verifications at runtime. With this new characteristic, C# 4.0
offers direct access to dynamically typed code in IronPython,
IronRuby and the JavaScript code in Silverlight.

The great suitability of dynamic languages for rapid prototyping
is, however, counteracted by limitations derived by the lack of
static type checking. This deficiency implies two major draw-
backs: no early detection of type errors, and less opportunities for
compiler optimizations. Static typing offers the programmer the
detection of type errors at compile time, making possible to fix

them immediately rather than discovering them at runtime −when
the programmer's efforts might be aimed at some other task or
even after the program has been deployed. Moreover, since run-
time adaptability of dynamic languages is mostly implemented
with dynamic type systems, runtime type inspection and checking
commonly involves a significant performance penalty.

Since translating an implementation from one programming
language to another is not a straightforward task, there have been
former works on providing both typing approaches in the same
language (see Section 4). Meijer and Drayton maintained that
instead of providing programmers with a black or white choice
between static or dynamic typing, it could be useful to strive for
softer type systems [1]. There are situations in programming when
one would like to use dynamic types even in the presence of
advanced static type systems, following the idea of static typing
where possible, dynamic typing when needed [1].

We have developed an extension of C#, called StaDyn, which
supports both static and dynamic typing. StaDyn permits the rapid
development of dynamically typed prototypes, and the later con-
version to the final application with a high level of robustness and
runtime performance. The programmer indicates whether high
flexibility is required (dynamic typing) or correct1 execution
(static) is preferred. It is also possible to combine both approach-
es, making parts of an application more flexible, whereas the rest
of the program maintains its robustness and runtime performance.
StaDyn allows the separation of the dynamism concern [2], facili-
tating the transition from rapidly developed prototypes to final
robust and efficient applications.

In this paper, we present an extension of the Visual Studio (VS)
IDE that facilitates this transition from rapid prototyping to robust
software production. It also supports converting statically typed
code into more flexible dynamically typed one, reducing the
changes in the source code. Although the IDE extension is cur-

1 We use correct to indicate programs without runtime type errors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA.
Copyright 2011 ACM 978-1-4503-0599-0/11/05... $10.00.

rently based on StaDyn, the work presented can be also applied to

the new dynamic type included in C# 4.0 −in fact, StaDyn is an
extension of C# 3.0.

2. THE STADYN LANGUAGE
This section presents a summary of the distinguishing features of
the StaDyn programming language. A more detailed description
can be consulted in [3], and its formal specification in [4].

We have extended the use of the C# var implicitly typed local
references. The type of references can still be explicitly declared,

while it is also possible to use the var keyword to declare impli-
citly typed non-initialized local variables, parameters, return types
and fields (see the example code in Figure 1). For this purpose,
StaDyn implements a type inference (reconstruction) algorithm
[5] and its type system has been extended to be constraint-based
[6].

A var variable can have different types in the same scope. This
is a common feature of dynamic languages, although StaDyn
provides it with compile-time error detection. The example code

in Figure 12 shows how the alias variable first holds an int

value (line 34) and soon after an Alias object (line 38). The static
type system of C# allows the compilation of the lines 35 and 39 in
Figure 1.

Duck typing is a property offered by most dynamic languages
that means that an object is interchangeable with any other object
that implements the same dynamic interface, regardless of wheth-
er they have a related inheritance hierarchy or not. The StaDyn
programming language offers static duck typing. The benefit
provided is not only that duck typing is supported, but also that it

is statically typed. Whenever a var reference may point to a set of

objects that implement a public m method, the m message could be
safely passed. These objects do not need to implement a common

interface or an (abstract) class with the m method. In line 31 (Fig-

ure 1) the x field can be accessed because both Circumferences

and Rectangles provide this field. In case the figure reference

would also be pointing to a third Triangle object (as happens in
Figure 2), an error message would be shown by the compiler

because Triangle objects do not provide an x field.
Since this analysis is performed at compile time, the program-

mer benefits from both early type error detection and better run-
time performance. We have defined a new interpretation of union
and intersection types to implement this feature [4].

StaDyn permits the use of both static and dynamic var refer-

ences −we do not include a new dynamic type as C# 4.0. The
dynamism concern is not explicitly stated in the source code; it is
specified in a separate XML file [3], transparently managed by the
IDE. This makes it possible to customize the trade-off between
runtime flexibility of dynamic typing and runtime performance
and robustness of static typing. It is not necessary to modify the
application source code to change its dynamism. Therefore, dy-
namic references could be converted into static ones and vice
versa, without changing the application source code.

Depending on their dynamism concern, type checking and type
inference is more restrictive (static) or lenient (dynamic), but the
semantics of the programming language is not changed (i.e.,
program execution does not depend on its dynamism). This idea
follows the pluggable type system approach [7]. As an example,
the compiler would show an error if the x field of the figure

reference in Figure 2 would be accessed, being figure declared

2 The constructors of Circumference, Rectangle and Triangle assign

random values to their fields. Their implementations are omitted for the
sake of brevity.

as static: not all the possible types of figure provide an x field

(i.e., Triangle). On the other hand, the compiler would accept

the program if the figure reference was dynamic: at least one

possible type of figure (both Circumference and Rectangle)

provides an x field.

01: using System;
02: class Circumference {
03: public var x, y, radius;
04: }
05: class Rectangle {
06: public var x, y, width, height;
07: }
08: class Triangle {
09: public var x1, y1, x2, y2, x3, y3;
10: }
11: class Alias {
12: private var theObject;
13: public Alias(var theObject) {
14: this.theObject = theObject;
15: }
16: public void incX1(var inc) {
17: theObject.x1 = theObject.x1+inc;
18: }
19: public var getTheObject() {
20: return theObject;
21: }
22: }
23: class Program {
24: public static int f() {
25: var figure;
26: if (Random.Next() % 2 == 0)
27: figure = new Circumference();
28: else
29: figure = new Rectangle();
30: // static duck typing
31: return figure.x; // int is inferred
32: }
33: public static void Main() {
34: var alias = f();
35: int twiceX = alias * 2;
36: var triangle = new Triangle();
37: // different types, same scope
38: alias = new Alias(triangle);
39: alias.incX1(0.5);
40: int x = triangle.x1; // comp. error
41: double d = triangle.x1;
42: }
43: }

Figure 1. Example StaDyn core.

The problem of determining if a storage location may be ac-
cessed in more than one way is called Alias Analysis [8]. Two
references are aliased if they point to the same object. Although
alias analysis is mainly used for optimizations, we have used it to
know the concrete types of the objects a reference may point to.

The alias reference in line 38 (Figure 1) holds an Alias ob-

ject that points to a Triangle. The incX1 message is passed to

the alias object that indirectly changes the type of the x1 tri-

angle's field to double. Afterwards, when the x1 field of the

triangle object is accessed, the compiler shows an error in line
40 and accepts the assignment in line 41, because the type-based

alias analysis detects the new double type of the x1 triangle's
field.

The alias analysis algorithm we have implemented is type-
based [9] (uses type information to decide alias), inter-procedural
[8] (makes use of inter-procedural flow information), context-
sensitive [10] (differentiates between different calls to the same
method), and may-alias [11] (detects all the objects a reference
may point to; opposite to must point to).
The static type information gathered by the StaDyn compiler is
used to optimize the generated .NET code. Runtime performance
has been compared with C# 4.0 and VB 10, entailing significant
performance improvements [3].

When using dynamic references, execution time shows a linear
increase in the number of types inferred by the compiler. The
maximum runtime performance benefit was obtained when the
exact single type of a dynamic reference, being StaDyn is more
than 2,322 and 3,195 times faster than VB and C#, respectively.

This performance benefit drops when the number of p
types increases. The worse scenario is when the typ
not infer any type information of dynamic references. In this case,
StaDyn is 2.95 and 4.42 times faster than VB and C#, respe
[3].

3. IDE SUPPORT
We have extended the functionalities of VS to make
features provided by StaDyn. We have employed the Managed
Package Framework (MPF) to implement new VS extensi
packages (VSPackages). In particular, two new
and StaDyn language extension packages have been developed.

The basic common features offered are the creation
projects, the common VS editing services for
same color syntax highlighting of C#, and the typic
build, clean and start commands. Figure 2 shows a snapshot of
the VS extension where one of the four StaDyn

being edited. Notice that dynamic references (i.e.,
displayed in red, denoting a kind of caution becaus
errors might be produced at runtime.

Taking advantage of the StaDyn type inference (reconstruction)
system, VS now displays all the possible messa

passed to any var reference. Unlike C#, IntelliSense works even

with dynamic references. Figure 2 shows how the dyn

ure reference accepts the union of all the messages in

rence, Rectangle and Triangle. In case it was static,
union type would only accept the intersection of th

−see the type system formalization in [4].
As Figure 2 shows, the information of each message

played on the right of each member identifier as an

Moreover, when the mouse moves over a var
a hint with the type information gathered. In Figur

indicates that the inferred type of the randomValue

typed variable is int3.

Figure 2. IntelliSense behavior with dynamic refere

The benefit of separating the dynamism concern (not explicitly
stating it in the source code) is that it makes it

3 The numbers shown after Var are the unique identifiers set to each

reference [4].

This performance benefit drops when the number of possible
types increases. The worse scenario is when the type system does

information of dynamic references. In this case,
is 2.95 and 4.42 times faster than VB and C#, respectively

We have extended the functionalities of VS to make use of the
. We have employed the Managed

Package Framework (MPF) to implement new VS extension
). In particular, two new StaDyn project

language extension packages have been developed.
The basic common features offered are the creation of StaDyn

VS editing services for StaDyn files, the
same color syntax highlighting of C#, and the typical build, re-

commands. Figure 2 shows a snapshot of
StaDyn files in a project is

that dynamic references (i.e., figure) are
displayed in red, denoting a kind of caution because dynamic type

type inference (reconstruction)
system, VS now displays all the possible messages that can be

reference. Unlike C#, IntelliSense works even

with dynamic references. Figure 2 shows how the dynamic fig-

reference accepts the union of all the messages in Circumfe-

. In case it was static, the
union type would only accept the intersection of their messages

As Figure 2 shows, the information of each message is dis-
played on the right of each member identifier as an IDE hint.

var variable, VS shows
a hint with the type information gathered. In Figure 2, a hint

randomValue statically

Figure 2. IntelliSense behavior with dynamic references.

concern (not explicitly
stating it in the source code) is that it makes it easy to change

are the unique identifiers set to each var

dynamically typed code into statically typed one, a
In fact, StaDyn offers three different types of compilation:
default one that takes into consideration the speci
each single reference; the everything dynamic

rapid prototyping, that considers every

and the everything static one that interprets all the
as static. The two last options are displayed in the
shown in Figure 3, whereas the default option is in
standard Build menu.

Figure 3. Compiler error using the

Figure 3 shows how the StaDyn

errors, even when the everything dynamic

used. An error message saying

rence∨Rectangle∨Triangle has no valid X member

because none of these types offer any upper
Therefore, setting a reference as dynamic does not
message could be passed to it; static type
formed. This feature improves the robustness of dyn
hybrid) typing languages.

Figure 4. Changing the dynamism of a

dynamically typed code into statically typed one, and vice versa.
offers three different types of compilation: the

default one that takes into consideration the specific dynamism of
everything dynamic option, created for

rapid prototyping, that considers every var reference as dynamic;

one that interprets all the var references
last options are displayed in the StaDyn menu

shown in Figure 3, whereas the default option is included in the

Figure 3. Compiler error using the everything dynamic option.

aDyn compiler statically detects type
everything dynamic compilation option is

used. An error message saying the dynamic type Circumfe-

Triangle has no valid X member is shown,

because none of these types offer any uppercase � public member.
Therefore, setting a reference as dynamic does not imply that any
message could be passed to it; static type-checking is still per-
formed. This feature improves the robustness of dynamic (and

ing the dynamism of a var reference.

Once the programmer finds out the error, he or she will modify

the source code to correctly access the x (lowercase) field. If the
program is compiled once again, the executable file will be gener-

ated. In this case, the compiler accepts passing the x message,

because both Circumference and Rectangle (but not Trian-

gle) types offer that field.
The generated program will not produce any runtime type error

because the random number that is generated will always be 1 or
2. However, if the programmer, once the prototype has been
tested, wants to generate the application using the static type

system, he or she may set the figure reference as static. As
illustrated in Figure 4, it is only necessary to right click on the
reference and select its dynamism. In this case, the compilation

will produce an error message telling that x is not a valid member

of Triangle. The programmer should then modify the source
code to compile this program with the robustness and efficiency
of a static type system, but without requiring the translation of the
source code to a new programming language.

As Figure 4 shows, VS now allows making every var reference
in a StaDyn file dynamic or static, without changing the source
code (these options are also part of the new StaDyn menu). Using
the static type inference system, it is also possible to explicitly

declare var references. As an example, if we select this option

with the random variable, its declaration will be changed from

var to int.

4. RELATED WORK
There has been different hybrid dynamically and statically typed
programming languages: from StrongTalk to C# 4.0, including
Dylan, Cobra, Fantom, Boo, Thorn and VB .NET. Probably, the
most similar to StaDyn is Boo. In Boo, a reference may be impli-
citly declared making the compiler infer its type (references could
only have one unique type in the same scope), but fields and
parameters could not be declared without specifying its type. The

Boo compiler provides the ducky option that interprets the Ob-

ject type as if it was duck, i.e. dynamically typed. This approach
follows the idea of separating the dynamism concern, but does not
reduce the number of changes to be done in the source code. Boo
also provides the BooLangStudio, a service language for VS
2008, currently released as an alpha version. Its features include
syntax highlighting, building and debugging services and basic
IntelliSense capabilities for statically typed references only.

Cobra is another hybrid typing programming language that pro-
vides an IDE support. The Cobra approach is similar to C# 4.0,

offering a new dynamic for dynamic typing. The language is
compiled to .NET assemblies. There are two IDEs, Visual Cobra
and a plug-in for SharpDevelop, that offer editing, compiling and
syntax highlighting. Neither of both facilitates the transition from
dynamically typed code to statically typed one.

The Fantom programming language generates both JVM and
.NET code, offering dynamic and static typing. Instead of adding a

new type, dynamic typing is obtained with the -> dynamic invoke
operator. Unlike the dot operator, the dynamic invoke operator
does not perform compile-time checking. Fantom does not follow
the Separation of Concerns principle. The Fantom IDE can be
installed either as a Netbeans plug-in or as a standalone IDE.
Since no static type inference is performed, the Fantom IDE does
not provide autocomplete with the dynamic invoke operator.

5. CONCLUSIONS
The benefits of both dynamic and static typing have made some

programming languages include hybrid type systems to create
both rapidly developed prototypes and robust and efficient soft-

ware. However, the existing IDE for these languages do not facili-
tate the conversion of dynamically typed code into statically typed
one and the other way around. For this purpose, we have extended
the professional VS IDE, providing features such as autocomplete,
type information and explicit type declaration for implicit dynam-
ically typed references. Following the Separation of Concerns
principle, we have implemented three different ways of compila-
tion and different services to convert dynamically typed code into
statically typed one (and vice versa), minimizing the changes in
the application source code.

Although we have used the StaDyn programming language, our
work could also be applied to other hybrid statically and dynami-
cally typed languages such as C# 4.0. We are currently porting the

code to VS 2010 −the current plug-in is only valid for VS 2008.
Future work will be centered on making VS an interactive edit-
debug-test environment similar to those provided for dynamic
languages.

The current release of the StaDyn VS extension, its source code,
and all the examples presented in this paper are freely available at
http://www.reflection.uniovi.es/stadyn/download/2011/topi

6. ACKNOWLEDGMENTS
This work has been funded by Microsoft Research, under the

project entitled Extending dynamic features of the SSCLI. It has
been also funded by the Department of Science and Technology
(Spain) under the National Program for Research, Development
and Innovation; project TIN2008-00276 entitled Improving Per-

formance and Robustness of Dynamic Languages to develop

Efficient, Scalable and Reliable Software.

7. REFERENCES
[1] E. Meijer, and P. Drayton. Dynamic typing when needed: the

end of the Cold War between programming languages. In
OOPSLA Workshop on Revival of Dynamic Languages, Oc-
tober 2004.

[2] W. Hürsch, and C. Lopes. Separation of concerns. Technical
Report UN-CCS-95-03, Northeastern University, Boston,
USA, 1995.

[3] F. Ortin, D. Zapico, J.B.G. Perez-Schofeld, and M. Garcia.
Including both Static and Dynamic Typing in the same Pro-

gramming Language. IET Soft., 4(4): 268−282, August 2010.
[4] F. Ortin, and M. García. Union and Intersection Types to

Support both Dynamic and Static Typing. Inform. Process.

Lett., 111(6): 278−286, February 2011.
[5] R. Milner. A theory of type polymorphism in programming.

J. Comput. Syst. Sci., 17(3): 348−375, 1978.
[6] M. Odersky, M. Sulzmann, and M. Wehr. Type inference

with constrained types. Theor. Pract. Obj. Syst., 5(1): 35−55,
January 1999.

[7] G. Bracha. Pluggable type systems. In OOPSLA workshop on

revival of dynamic languages, October 2004.
[8] W. Landi, and B. Ryder. A safe approximate algorithm for

interprocedural pointer aliasing. In Programming Language

Design and Implementation (PLDI), June 1992.
[9] A. Diwan, K. McKinley, and J. Moss. Type-based alias

analysis. In Programming Language Design and Implemen-

tation (PLDI), June 1991.
[10] M. Emami, R. Ghiya, and L. Hendren. Context-sensitive

inter-procedural points-to analysis in the presence of function
pointers. In Programming Language Design and Implemen-

tation (PLDI), June 1994.
[11] A. Appel. Modern Compiler Implementation in ML. Cam-

bridge University Press, 1998.

