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SUMMARY

The development of service robots has gained more attention over the last years. Advanced robots have
to cope with many different situations emerging at runtime, while executing complex tasks. They should be
programmed as dynamically adaptive systems, capable of adapting themselves to the execution environment,
including the computing, user and physical environment. Recently, dynamic languages are becoming widely
used due to the high runtime adaptability they offer. Therefore, we have analyzed the suitability of these
languages to implement robotic systems with high runtime adaptability requirements, using Python as case
study because of its maturity. In order to evaluate their suitability, we have implemented a reflective robotics
framework that can be programmed in both Java and any dynamic language supported by the standard Java
Scripting API. An example scenario has been developed using Python to show how its distinguishing meta-
programming features have facilitated the development of runtime-adaptable robotics services.
Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The robotic systems that should be able to interact in everyday life have to manage the high
dynamism and complexity of real-world environments. They should consider environment elements
such as the identification and location of nearby people and objects [1]. Constantly changing
execution environments including the computing, the user, and the physical environment should
also be taken into account [2]. A highly adaptable robotic platform has to fulfill the adaptability
requirements of future robotic applications to solve problems in dynamic reactive environments.
The runtime discovery of new services to expose new behavior patterns must also be provided,
without limiting the number of sensory capabilities and behavioral patterns [3]. In these systems,
new requirements and services could appear at runtime, not foreseen at design time.

There are previous works focused on developing robotics services that require dynamic
adaptation. An example is the Nursebot project, based on a mobile robotic assistant [4]. It was
developed to assist elderly individuals with mild cognitive and physical impairments, and to support
nurses in their daily activities. They considered the task of reminding people of events and guiding
them through their environments. In the Museum Traffic Control project [3], a robot generated cues
that cause visitors to travel to portions of the museum that were normally avoided, being part of an
ambient-intelligent system that interacts with humans. In [5], a “smart walker” robot was designed
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to provide mobility assistance to the frail elderly visually impaired. They used a Bayesian network
to combine user input with high-level information derived from the sensors, providing an estimate
of the user’s current navigation goals. More information regarding highly runtime-adaptable robotic
systems is depicted in Section 5.

Dynamic languages have recently turned out to be suitable for specific scenarios such as Web
development, application frameworks, game scripting, interactive programming, rapid prototyping,
dynamic aspect-oriented programming and any kind of runtime adaptable or adaptive software. The
main benefit of these languages is the simplicity they offer to model the dynamism that is sometimes
required to build high runtime adaptable software. Common features of dynamic languages are
reflection, dynamic code generation and evaluation, mobility and dynamic reconfiguration and
distribution.

Computational reflection is one of the most distinguishing features of these languages, defined
as the capability of a computational system to reason about and act upon itself, adjusting itself to
changing conditions [6]. Due to the strong connection between highly runtime-adaptable robotic
systems and reflective dynamic languages, we have investigated how dynamic languages could
be used to facilitate the programming of runtime adaptable services in robotic platforms. In fact,
it has been previously stated that in order to support context-awareness in an open and much
larger setting, a reflective, or self-describing, context model is required [7]. Existing approaches
have previously taken advantage of the distinctive features of dynamic languages for controlling
and simulating robotic systems, being Pyro [8], ROS [9] and UrbiScript [10] three well-known
examples—a comparison with our system is presented in Section 5.2.

The main contribution of this paper is the identification of how the distinguishing features of
dynamic languages can be used to program dynamically adaptive services in a robotics framework.
For this purpose, we have developed a Java robotics framework (called TIC4BOT) whose main
purpose is programming robotics services in any dynamically typed programming language and
showing how these languages can be used for the benefit of robotics. Using Python as a case
study, we have implemented an example scenario to show how dynamic languages can be used
to program runtime-adaptable robotics services. The particular features of dynamic languages have
been used in different use cases to provide remote hot-reprogramming of services, adaptation of
existing components at runtime, insertion of new primitives and events, and allowing the use of
new Web services discovered at runtime. These features are offered dynamically, requiring neither
stopping the framework execution nor knowing what elements are going to be adapted at runtime.
Some other approaches like service-oriented component-based software systems also provide a high
level of runtime adaptability. Using the example scenario presented in this paper, a comparison
between both approaches is also detailed in Section 5.1.

The developed scenario is inspired by the Nursebot project [4], where a robot provides reminder
services to patients in a nursing home. As an example, other implementations of this project extract
the schedule information from the entries of a user calendar [4] [7], using an accurate model
of the user daily schedule. In our proposed approach, in contrast, no information about the user
schedule is provided when the application is executed. Our system provides dynamic adaptability
to new services emerging at runtime, exploiting the distinguishing features of dynamic languages.
Following the basic requirements of mobile robot architectures defined in [11], our work is mainly
focused on evaluating with different use cases the appropriateness of dynamic languages to fulfill
the extendibility and scalability requirements.

1.1. Specific Requirements of Highly Dynamic Robotic Systems

The following are particular requirements fulfilled by highly dynamic robotic systems such as
service-oriented component-based software systems. We briefly analyze the suitability of dynamic
languages to address each requirement and the distinctive feature of dynamic languages we have
used to accomplish it. Each dynamic language feature is detailed in Section 2.

1. Dynamic hot reprogramming of the system. In some circumstances a robotic system should
be able to react to dynamically emerging requirements, not foreseen at design time. We have
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SUITABILITY OF DYNAMIC LANGUAGES FOR HOT-REPROGRAMMING A ROBOTICS FRAMEWORK 3

used the dynamic code evaluation feature of dynamic languages to dynamically add new
pieces of code that interact with the rest of the running system.

2. Homogeneous discovering of dynamic services published by the framework. Whenever a
new service is published, it should be accessible to any other running service. Introspection
is used to consult the list of services provided and the structure and functionality of each
one. Duck typing allows the use of these new services without needing to define a complex
hierarchy of interfaces and classes, dynamically discovering the object methods and fields.

3. Interactive, compact and straightforward programming of services. In many scenarios,
the programming of new services simply “glues” together the existing primitives, modules
and services in the robotic system. This is a common situation where dynamic languages have
been identified as appropriate because of their high level of abstraction and their flexible and
dynamic type system. They facilitate interactive development, used as scripting languages. We
have also used structural and behavioral intercession to include cross-cutting concerns to the
functional code provided by the programmers, freeing them from implementing unnecessary
code.

4. Discovering and interaction of running applications. The existing applications and
components in the robotics framework may be able to dynamically discover and interact with
the rest of applications and components in the system. The main feature of dynamic languages
we have used to fulfill this requirement is introspection.

5. Standards-based bidirectional communication between the system and dynamically
discovered remote devices / systems. In our proof-of-concept scenario, we represent new
remote devices and systems by means of Web services that publish their functionality with
standard WSDL documents. The programmers may easily create new robotics services that
establish a bidirectional communication with these remote devices. They only have to specify
the URL of the WSDL: dynamic code generation and structural and behavioral intersection
are used to dynamically create a specific proxy class for that Web service; introspection is
used to analyze the messages offered by this new class; and duck typing is used in the code
that invokes methods to be created later on, at runtime, when the Web service is dynamically
discovered.

6. Dynamic adaptation of existing services. Existing applications may be adapted when new
requirements emerge at runtime. Since the dynamic adaptation of running applications is one
of the most common scenarios of dynamic languages [12], those services developed using
dynamic languages in the robotics framework will benefit from this adaptability feature.
Intercession is the main feature used to perform this adaptation.

The rest of this paper is structured as follows. In the next section we introduce the meta-
programming features of dynamic languages and their relationship with adaptable robotic systems.
Section 3 provides the description of the project, and an overview of the general architecture and
the location of the adaptive dynamic programming layer within the system. Section 4 describes the
adaptive dynamic programming layer, and related work is discussed in Section 5. Section 6 presents
the conclusions and future work.

2. META-PROGRAMMING FEATURES OF DYNAMIC LANGUAGES

One of the distinguishing features of dynamic languages is meta-programming. It is commonly
referred to as the programming language capability of writing (parts of) programs that manipulate
programs, including themselves, as data. The same way a programmer modifies an application
when new requirements must be fulfilled; meta-programming provides this program modification at
runtime, without needing to stop the application. This involves a great runtime flexibility to handle
new situations without stopping the running application.

The two main programming features offered by dynamic languages to allow meta-programming
are computational reflection and dynamic code generation and evaluation (also known as generative
programming).
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2.1. Computational Reflection

Reflection is the capability of a computational system to reason about and act upon itself, adjusting
itself to changing conditions [6]. The computational domain of reflective languages includes their
self-representation. Therefore, they can offer their structure and semantics as computable data.
Reflection happens when the system is performing computation about (and by possibly affecting)
its own computation [6].

Since runtime adaptable robotic systems should dynamically adapt to runtime changing
environments, computational reflection seems to be a suitable technique to face this kind of
scenarios. We have previously used computational reflection as a suitable technique to build
dynamically adaptive systems such as persistence management [13], dynamic aspect-oriented
programming [14] or heterogeneous device support [15].

There exist different classifications of reflection [16]. The first classification has been established
considering observation and modification issues of the system self-representation:

• Introspection: Self-representation of programs can be dynamically consulted but not
modified. The applications can obtain information about runtime entities such as classes,
objects and methods. Introspection is offered not only by dynamic languages, but also by
some statically typed languages such as Java or C#. In our system, introspection is used
to dynamically discover the primitives, components and services offered by the robotic
platform. A basic example use of introspection in Python is the globals function. It
returns a dictionary containing all the global variables, including functions. The key set
collects the names of global variables, and the values collection holds the references to those
global variables. Python has first-class functions, meaning that functions are treated as first-
class objects. Therefore, the values collection in the dictionary returned by globals holds
function variables.

• Intercession: The ability of a program to modify its own execution state, interpretation
or meaning. Most dynamically typed languages offer this feature, whereas nearly all the
statically typed ones do not.

Another common classification is established according to what can be reflected:

• Structural Reflection: The changes performed in the application structure are reflected at
runtime. Python allows adding fields and methods to both objects and classes. Figure 1 shows
a straightforward fragment of Python code that uses structural reflection. First, a Proxy class
with no members and a proxy instance are created. Out of the scope of the class, it is defined
an f function that assigns the second value received to the item field of the self parameter,
and returns self. The next sentence assigns the f function to the new getattr method
of the Proxy class. This is a simple example of dynamic method addition ( getattr ) to
the Proxy class using structural reflection.

• Behavioral Reflection: This level of reflection implies access to system semantics. In case
the semantics is modified, it involves a customization of the runtime behavior of programs.
For instance, Python allows the overriding of the semantics of member lookup. If a class
has a getattr method, it will be called whenever a non-existing member is accessed.
Therefore, the code in Figure 1 assigns the name of the member accessed to the item field
by means of behavioral reflection, even if it does not exist in the object.
The source code in Figure 1 also uses behavioral reflection to change the semantics of
the message passing mechanism. If an object implements the call method, then it
will be callable; i.e., it can be invoked, receiving the actual parameters of the invocation.
In the proxy.getISSN("SP&E") invocation, the getISSN member can be accessed
even though the member does not exist, saving the name of the member (getISSN) in the
item field, and returning the proxy object (see the f function in Figure 1). Since proxy
implements the call method, the invocation to getISSN is correct, even though that
method is not actually implemented by the object. In this case, a simple example message is
displayed showing the name of the method called (getISSN) and its parameters ("SP&E”),
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class Proxy: 

    pass 

proxy = Proxy() 

def f(self, item): 

    self.item = item 

    return self 

def g(self, *args): 

    print 'The "%s" method has been invoked, \ 

                with the following params:' % self.item 

    for i in range(len(args)): 

        print "\tParam %s, value = %s, type = %s" \ 

                % (i+1, args[i], type(args[i])) 

# Structural reflection 
Proxy.__getattr__ = f 

Proxy.__call__ = g 

# Behavioral reflection 
proxy.getISSN("SP&E") 

Figure 1. Sample reflective Python code.

but using this technique a real proxy mechanism [17] could have been implemented. The
main advantage of this approach is that the delegate can be created at runtime, even after
instantiating the Proxy class.

2.2. Runtime Generative Programming

Another feature that is commonly used together with computational reflection is runtime generative
programming [18]. It is defined as the capability of programs to generate new (parts of) programs
at runtime. This feature is usually offered in conjunction with reflection, because those new parts of
generated programs may modify the structure and semantics of the running applications by means
of reflection. The generated code could be persistent (i.e., saving it into files) when we want to use
it in future program executions, or volatile (i.e., using character strings in memory) when it is not
required to keep the new functionality after program execution.

Dynamic code evaluation in Python is provided by the exec and eval functions. These
functions evaluate at runtime the character string or text file passed as an argument. Figure 2 shows
a Python example that combines dynamic code evaluation and reflection. First, the classCode
variable is assigned a string that, when evaluated, creates a class that, using behavioral reflection,
is able to invoke any method. This code is parameterized with the name of the class to be created
(Navigation in our example). When the goTo message is passed, the call method, using
the globals introspective function, searches for a goToPrimitive function to be invoked. This
search is performed at runtime. It is also possible to pass the greet message to the navigation
object, but only after defining the greetPrimitive—otherwise, a runtime exception would be
raised.

Another distinguishing feature of dynamic languages is duck typing. Although duck typing
is not considered as a meta-programming feature, it is highly related with it. Duck typing†

is a property offered by most dynamic languages that means that an object is interchangeable
with any other object that implements the same dynamic interface, regardless of whether
those objects have a related inheritance hierarchy or not. As an example, when we write the
navigation.goTo(12,3) expression, navigation could be any object that implements
a goTo method receiving two integer values. It is not necessary to declare that reference as an
interface or class that provides that goTo message. It could be any object that, in that exact point of
execution, provides that particular method.

†If it walks like a duck and quacks like a duck, it must be a duck.
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classCode = """ 

class %(className)s: 

    def __getattr__(self, item): 

        self.item = item 

        return self 

    def __call__(self, *args, **kwargs): 

        return globals()[self.item+"Primitive"](*args) 

""" 

def goToPrimitive(x, y): 

    print "going to (" + str(x) +", "+str(y) +  ")" 

exec(classCode % ({"className": "Navigation"})) 

navigation = Navigation() 

navigation.goTo(12, 3) 

def greetPrimitive(name): 

    print "How are you, " + name +  "?" 

navigation.greet("SP&E") 

Figure 2. Sample dynamic code evaluation in Python.

One of the outcomes of duck typing is that it supports polymorphism without using inheritance.
Therefore, the role of the abstract methods and interfaces as mechanisms to specify contracts is
made redundant. Since it is not necessary to define polymorphic inheritance hierarchies, software
can be developed more quickly and the source code is more compact. It also facilitates writing code
that invokes methods that have not been created when the application is being developed, because
type-checking is postponed until runtime.

3. THE TIC4BOT PROJECT

The work presented in this paper is part of the TIC4BOT Project [19][20]. This project was
developed by the Treelogic Company, the Cartif Foundation, and the University of Oviedo. The aim
of the project is to provide the necessary infrastructure to develop adaptable services in the social
robotics field (as well as primary modules to support them), by raising the level of abstraction.
The implementation was tested over a real robotic platform (SCITOS-G5), though the system was
designed with total independence of the hardware. The Player / Stage [21] system was used to obtain
this independence, deploying the project directly over the Stage emulator. The SCITOS-G5 robotic
platform is controlled by an embedded PC with an Intel Core 2 Duo processor and multiple small
hardware units that monitor several functions of the robot. The operating system is Fedora Core 8.

Figure 3 shows the system architecture, consisting of three layers: primary modules, the robotics
framework and service modules. The system has a simple architecture compared to larger generic
systems such as ROS [9] and SmartSoft [22]. This simplicity has facilitated its modification
to experiment with the suitability of meta-programming features of dynamic languages to build
runtime adaptable robotic systems.

3.1. Primary Modules

Primary modules are aimed at accessing the hardware libraries in C and C++ using the Java
Native Interface (JNI) standard. Primary modules implement primitives and events. A primitive
is a low level function that can perform a simple task or a query over any sensor or actuator of the
robotic platform (e.g., a query that retrieves the distance from the robot position to an obstacle).
An event is a notification that something has happened, sent by a primary module (e.g., the robot
has hit something). Although possible, neither components nor applications should be modeled as
primary modules. For that purpose, our system provides Java modules (Section 3.2) and services
(Section 3.3).
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Figure 3. Architecture of the TIC4BOT system.

In the framework, primitives are classified into namespaces. Each namespace contains a set of
primitives, with a one-to-one correspondence with primary functions. Therefore, it is necessary to
retrieve a specific namespace and search for the correct primitive before invoking it. This process
is interleaved with authentication and authentication subsystems, which have the responsibility to
grant and deny access to the framework services (next subsection).

3.2. The Framework

The framework provides common basic functionalities plus a middle layer for creating Java modules
(components) which integrate primary modules and service modules [23]. A Java module or
component (Figure 3) is a collection of classes in a package that provides a functionality to be
reutilized by different applications (service modules). They commonly increase the abstraction level
of primary modules. Java modules can be parameterized like any Java class, and interact with other
components to provide a specific functionality. Service modules may use components to implement
robotic applications.

The framework allows developing components (and services) with different programming
languages, without worrying about the underlying technology used to develop primary modules. It
raises the level of abstraction and allows discovering of new services and modules added at runtime.
We chose the Java programming language to obtain platform independence and a higher level
of abstraction. Java raises the abstraction level, providing automatic memory allocation, garbage
collection and multi-threading (among other features). However, these benefits come at the expense
of lower runtime performance [24]. This implies that the robot hardware should have enough
processing capabilities to perform the required tasks. In the case of our project, the SCITOS-G5
platform fulfills this requirement. The main functionalities provided by the framework are:

• Authentication and authorization. All the operations in our system are controlled by the
authentication and authorization subsystem based on the JAAS (Java Authentication and

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
Prepared using speauth.cls DOI: 10.1002/spe



8 F. ORTIN, S. MENDEZ, V.GARCÍA-DÍAZ, M. GARCIA

// Authentication 

Subject subject = null; 

subject = Authorization.login("admin", "password"); 

// Retrieve Namespace and Primitive 

ApiManager api = FactoryManager.getApiManager(FactoryManagerType.Default); 

Namespace namespace = api.getNamespaceByName("Navigation"); 

Primitive primitive = namespace.getPrimitiveByName("goTo"); 
// Parameters creation 

Object[] parameters = new Object[2]; 

parameters[0] = x; 

parameters[1] = y; 

// Invocable element for the framework 

InvocationElement invocationElement = 

        new InvocationElement(subject, namespace, primitive, parameters); 

// Create a list of invocation elements 

List<InvocationElement> list = new ArrayList<InvocationElement>(); 

list.add(invocationElement); 

// Create the task (Execution Mode) 

Task task = new DefaultTask("Sample Task"); 

task.setInvocationElements(list); 
// Create the Runnable (Priority) 

ExecutionManager executionManager = FactoryManager. 

            getExecutionManager(FactoryManagerType.Default, subject); 

Runnable runnable = executionManager.insertTask(task,  

            RunnablePriority.MAX, RunnableSyncronism.SYNCHRONOUS); 

// Retrieve the result 

Object result; 

while (true){ 

    try { 

        result = runnable.getResult(0); 

        break; 

    } catch (NullValueException e) { 

        Thread.currentThread().sleep(100); 
    } 

} 

 

Figure 4. Sample code of framework programming.

Authorization Service) framework [25]. We first check whether users can access the system,
validating their login and password. Then, we use a Java security policy file to enforce a
set of permissions granted to each user, classifying them into groups (currently we have
administrators, programmers, testers and users). After authentication, the system generates
the credentials associated to the user group. The authorization subsystem of the framework
checks that the user has sufficient rights to perform an operation (e.g., hot reprogramming,
retrieval of running tasks, access to a specific primitive, etc.) each time the user application
requests to do so.

• Runtime detection of primary modules, allowing the dynamic addition of new primary
modules. The framework provides the implementation of primary modules in both C and
C++, generating one Java proxy class at runtime for each C / C++ module. Proxies are classes
that provide access to primary module functions. These Java proxies are developed using JNI
through SWIG (Simplified Wrapper and Interface Generator) [26]. SWIG offers an automated
connection of programs written in C and C++ with a variety of high-level programming
languages. This automation is essential to offer the dynamic addition of primitives and events,
and their runtime discovery through reflection.
Figure 4 shows part of a Java module (component) that invokes a primitive. First,
authentication over the framework is performed and credentials for executing tasks are
obtained. Then, the Navigation namespace and its goTo primitive are obtained. An
Object array is created containing the values of parameters for the invocation (next point in
the enumeration).

• Transparent publication of all the elements offered by the primary modules. The framework
provides the necessary mechanisms to discover and invoke primitives at runtime. It also
provides event subscription management, so that service modules and components can
subscribe to any event in order to be notified when the event is triggered.
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The next step of our sample code in Figure 4 is to create a task by means of Invocation-
Elements. An InvocationElement is the mechanism provided by the framework
to access primitive modules. A list of InvocationElements is created to define the
collection of modules that make up a complete task. Finally, a Runnable object is created
as the result of introducing the previously created task into the framework execution engine.
The Runnable object is used to retrieve the result of the goTo primitive invocation. The
loop in the code waits until the result of the primitive invocation is ready.

• Concurrent task execution and synchronization. The framework allows the concurrent
execution of different tasks. For this purpose, we define synchronous and asynchronous tasks.
Asynchronous tasks can be executed in parallel with other tasks, whereas two synchronous
tasks cannot be executed concurrently. The synchronous navigation task created in Figure 4
allows other asynchronous tasks to run in parallel. However, any other synchronous task
should wait for this task to finish.
To establish priorities in the execution of tasks, the framework provides different levels of
prioritization—the task in Figure 4 has the maximum priority level for programmers (MAX).
When two or more synchronous tasks are waiting to be executed, the one with higher priority
is chosen (in case of a tie, a FIFO policy is used). Priorities are also used to compute the
percentage of time slicing to be assigned in the scheduling of asynchronous tasks.
As shown in Figure 4, tasks are created with a list of InvocationElements (i.e.,
invocations to primitive modules). A DefaultTask indicates that its list of invocations
can be interrupted by any other task. When all the InvocationElements in a
task must be executed atomically (without any interruption in their invocations), the
TransactionalTask should be used instead. This behavior is orthogonal to the
synchronization type of the task.
Task execution can be terminated by the user. The getExecutionManager
method of the FactoryManager Singleton object returns an implementation of the
ExecutionManager interface. ExecutionManagers return Runnable objects by
passing the task identifier as a parameter. Passing the stop message to a Runnable
object causes the termination of the corresponding task. This operation is controlled by the
authorization subsystem and can only be performed by either the task owner or the system
administrator.

• Remote hot reprogramming at runtime. This service enables remote systems to send their
components and services to the framework at runtime. This service is provided through Web
services, using standard technologies. The first one is WSDL, the W3C recommendation for
describing Web services. It is XML-based and widely used. The operations and messages
are abstractly described and bound to a concrete network protocol and message format to
define an endpoint. Moreover, WSDL is extensible, allowing the description of endpoints
and messages, being independent of message formats and network protocols. In this project,
WSDL is used in combination with SOAP (Simple Object Access Protocol) [27]. The SOAP
protocol specifies the interchange of data with Web services by means of XML messages.
Our framework allows remote reprogramming using either Java or any dynamic language
supported by the Java Scripting API (see Section 4). Java developers can use tools like
simulators (e.g., Player) to test their code before uploading the new functionality. The server
compiles the Java code upon uploading. If there are compilation errors, the framework returns
a string containing the error messages. Otherwise, the component code is installed in the
framework, and executed in case it is a service module. Service modules are deleted by the
framework once their execution is finished. The remote hot reprogramming Web service also
provides component deletion and update. Java components are identified by their package
name, whereas module names are used for Python. The authentication and authorization
subsystem of the framework checks whether the user has sufficient rights to remove or update
a component. If any runtime error occurs at runtime, the exception is caught by the framework
and the execution of the service is aborted.
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3.3. Service Modules

Service modules represent robotic applications that provide end-user services by means of the
composition of installed components. The access to components and primary modules is performed
through the framework. Service modules insert sets of tasks in the framework with a concrete
priority and execution mode. These modules can be added at runtime through the hot reprogramming
service, using either Java or a dynamic language. The framework creates a new Java thread for each
service module, but all the threads share the same task scheduler described in Section 3.2.

It is worth noting that the framework has been designed to offer a high level of runtime
adaptability. First, new primitives, components and services can be added at runtime, while
applications are running on the framework. Second, these new functionalities can be discovered
and used by existing and future services. Finally, services and components developed with dynamic
languages can be modified at runtime using the meta-programming features of these languages.

4. ADAPTIVE DYNAMIC PROGRAMMING LAYER

The adaptive dynamic programming layer is a new tier over the framework that supports the
development of services capable of adapting to dynamic environments. As it was mentioned before,
runtime adaptation scenarios often involve the fulfillment of new requirements at runtime, making
use of the services offered by the framework.

Dynamic languages offer a high degree of runtime adaptability, facilitating the agile and
interactive development. Therefore, we analyze the suitability of dynamic languages to provide
a runtime adaptive system that additionally provides a simplified way of programming runtime
adaptable tasks. We enhance the framework with an additional layer that provides a higher degree
of adaptability using dynamic languages.

This is an outline of how we have used the specific features of dynamic languages to design the
adaptive dynamic programming layer, facilitating the runtime development and deployment of new
services:

• Dynamic code evaluation. Its main use has been the dynamic hot reprogramming of the
system, facilitating the rapid interactive development of new services.

• Introspection. It has been used to dynamically discover primitives, services and components
in the framework, along with remote devices and services.

• Structural Intercession allows the dynamic modification of the structure of objects, classes
and modules. We have primarily used this feature to perform dynamic adaptation of existing
services.

• Dynamic code generation. Its main use has been the runtime generation of proxy classes
that perform a bidirectional communication with remote devices and systems. This code
is transparently generated when the programmer specifies the URL of a remote WSDL
document.

• Behavioral Intercession has been used to extend the semantics of the message passing
mechanism, simulating methods and fields that objects do not actually implement. An
example use is the bidirectional communication with other systems, where messages of a local
proxy class are dynamically translated into SOAP message calls to a remote Web service.

• Dynamic Duck Typing makes the code simpler, because it is not necessary to define complex
class and interface hierarchies to make the code statically type-checked by the compiler. Since
type checking is performed at runtime, it is remarkably simple to write code that makes use
of primitives, components and services that are not available when the application is being
coded. The result is a more compact and simpler source code, facilitating the interactive
remote programming of services.

Since the framework is developed in Java, an intercommunication mechanism between Java
and dynamic languages is required. The Java Scripting API (JSR 223, Scripting API for the Java
Platform) [28] is a scripting language framework to allow the use of script engines from Java code.
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Figure 5. Design of the adaptive dynamic programming layer.

It allows the programmer to work with both Java and any dynamic language for which there is an
implementation of it, regardless of whether it is a domain-specific language or a general purpose
one. New languages can be added to our framework without changing the existing code.

Figure 5 shows an overview of the adaptive dynamic programming layer in the system
architecture. Using the Java Scripting API, the adaptive layer allows the implementation of
customizable and extensible applications over the TIC4BOT framework. All the functionality
provided by the framework in Java can be programmatically accessed at the adaptive layer using
a dynamic language.

We selected the Python programming language [29] to implement the adaptive dynamic
programming layer because it is a mature dynamic language that provides runtime structural and
behavioral reflection, dynamic code generation, a simple syntax, and a substantial number of
libraries and built-in functions readily available.

This layer enables the discovery of primary modules and Web services at runtime, generating
code at runtime that encapsulates these services. Different levels of computational reflection and
generative programming have been used to undertake this goal. First, introspection has been
employed to search the suitable method at each invocation performed by the generated code.
Structural reflection and intercession have also been used, together with generative programming, to
access wrapper classes (classes that wrap the framework primitives) and their dynamically created
methods. Since new primitives could be dynamically added, wrapper classes implement a lazy
method loading mechanism, searching for the suitable primitive at runtime—as shown in Figure 2.
This technique has also been used to invoke the operations remote Web services. The lazy invocation
mechanism is achieved by changing the semantics of the Python message passing mechanism. The
next subsection describes how this process is performed using an example scenario.

4.1. An Example Scenario

We have developed a prototype inspired by the scenario proposed by Pineau et al. [4] to
show how the adaptive layer can be programmed with dynamic languages to provide runtime
adaptable services. In this scenario, the robotic system should assist elderly individuals with an
automated reminder system (e.g., reminding patients to have their medicine). The main purpose
of implementing this scenario is to identify how the distinguishing features of dynamic languages
may be used to program this kind of runtime-adaptive robotics services. Therefore, we show how to
use dynamic languages for the following tasks: user authentication, creation of synchronous tasks,
access to basic movement primitives, creation of an example fuzzy-based navigation component,
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asynchronous event handling, remote reprogramming, and transparent access and use of Web
services. We have first tested the implementation in a simulated environment using Player / Stage.
Then, we have used SCITOS-G5 in a laboratory with obstacles, reproducing moving patients with
simulated positioning devices.

4.1.1. Authentication, Synchronization and Task Creation

In Section 3 we described the overall responsibilities of each layer of the system architecture.
Although the framework provides useful features for many use cases, the Java code for one
single operation over the framework may become verbose, as shown in Figure 4. The inherent
verbosity is mainly due to the lack of meta-programming features in Java, its static type system,
the big range of services offered by the framework (authentication, authorization, synchronization
and execution modes) and its own design (e.g., using widespread design patterns like Singleton
and Façade [17], having to retrieve Singleton instances many times as shown in Figure 4). This
implies the codification of several lines of code that perform non-functional actions, entailing
a less agile development of services. One of the main goals of the dynamic adaptive layer is
to simplify the programming over the framework, following the Separation of Concerns (SoC)
principle [30][31], that allows the reutilization of non-functional code. Meta-programming features
of dynamic languages are commonly used to achieve this goal [14].

In the adaptive dynamic programming layer, authorization and synchronization data is stored
along the entire programmer session, and it is used in all the operations performed over the
framework in a transparent way. Furthermore, this data could be changed at any moment by
the programmer. The code in Figure 6 creates a simple task, showing how authentication,
synchronization and task priority assignment are performed in the adaptive layer. This code is
the Python version of the Java program previously shown in Figure 4. User credentials and task
synchronization data are stored in this service module, so that this data can be retrieved and used by
the framework to check authorization when an operation is executed. The use of dynamic languages
facilitates data storage along the session because Python is not pure object oriented and it allows
choosing the scope of variables, classes and methods. In our case, session variables are stored in the
Python global scope of each service module.

4.1.2. Primitive Management

In the case of primitives, the dynamic adaptive layer allows the final programmers to write their
code in a more compact and natural way, facilitating its maintainability and legibility, and without
losing any functionality. This layer provides transparent primary-module discovery at runtime,
making it possible to act over new services, even if they were not present at design time.

As it was explained in Section 3, primitives in the framework are organized in namespaces. At
runtime, when a primary module is discovered, its primitives and namespace objects are created.
In the adaptive layer, generative programming and structural reflection are used to transparently
generate classes that wrap the framework services. The resulting code is a Python class that
has a one-to-one equivalence for each namespace object in the framework. For every object
instance representing a Namespace with sets of Primitive objects in Java, a class with the
corresponding methods is dynamically generated in Python. The purpose of this generation is to
provide a simple way to invoke those primitives discovered at runtime. Figure 6 shows the Python
source code in the adaptive layer that invokes the goTo primitive. This code is equivalent to the
Java program in Figure 4, being much more compact and legible.

Code generation is implemented using the exec Python function. We evaluate strings that
generate new classes at runtime, following the technique shown in Figure 2. The generated code
creates new Namespace classes (the whole code can be consulted in [32]). These classes do
not contain primitive methods actually; they provide a mechanism to alter the message passing
mechanism through behavioral reflection. Generated classes implement a dynamic lazy search of
the invoked method (primitive) using introspection. This search is performed over the framework
and it is completely transparent to the final user. These generated classes make use of two built-in
methods of Python behavioral reflection: call and getattr (their meaning was explained
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from FrameworkLoader import * 

# Authorization request 

authenticate(USER, PASSWORD) 

# Priority, execution mode and name of the task 

setTaskType(RunnablePriority.ONE, TRANSACTIONAL_TASK, "GoTo") 

# Object corresponding to Namespace Navigation 

navigation = Navigation() 

# Primitive execution and retrieve of result 

res = navigation.goTo(X, Y) 

Figure 6. Basic task creation over the adaptive layer.

in Section 2.1). If a method of a class is called and it is not found, the getattr method is
called instead. The call method receives as many parameters as the actual arguments of the
invocation, in a variable-length argument list. By combining these two methods, we can simulate
the behavior of a simple call to an object method. Figure 7 represents the UML sequence diagram
of the code in Figure 6, depicting how the dynamically generated Navigation class responds to
the goTo method invocation. The call process is as follows:

1. The user is first authenticated.
2. A new instance of the dynamically generated Navigation class is created.
3. The goTo method is searched in the navigation object.
4. The getattr method is called after failing the previous search.
5. The getattr method stores the name of the requested member (i.e., goTo), so that it can

be later used for searching and invoking the corresponding primitive. self is then returned.
6. The call is performed over the object returned, and hence the call method is invoked.

This method receives the x and y parameters, and performs the search of the primitive that
fits this signature. If found, the appropriate primitive of the framework is invoked, and the
call method returns the result of calling the primitive. Therefore, behavioral reflection

is used to define new semantics of the message passing mechanism.

Generative programming and computational reflection have been the two main features of
dynamic languages used to dynamically discover and invoke the new primitive modules provided
by the framework. The code is significantly more compact and legible than the Java version.

4.1.3. A Navigation Component

The goTo primitive of the Navigation namespace shown in Figure 6 does not consider
obstacles in the environment. Therefore, we have implemented a prototype navigation component
based on fuzzy rules to make the robot navigate to a patient location. Although the navigation logic
could have been expressed in Python using imperative functions, we have used a simple system
based on fuzzy rules. The use of fuzzy rules was merely for flexibility purposes because it allowed
us to easily modify the navigation logic by simply changing the rules.

This example also shows how Python features allow the representation of abstractions (such as
fuzzy rules) commonly expressed by means of specific domain languages. We have chosen a general
purpose dynamic language for the following reasons:

• Taking an existing language suppresses the necessity of designing a new language and
implementing an interpreter.

• Any functionality, component, API or framework available for the Python programming
language can be used in the implementation of applications.

• Source code is more readable, because Python is a widely used programming language [33]
and there is plenty of documentation about it.

We used the three simple rules shown in Figure 8 represented in Python by means of lists and
tuples. Each rule is modeled with a tuple, where the first value is the antecedent and the second
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Figure 7. Access to primitive services.

rules = \ 

  [ ( FuzzyNot( obstacleClose ),                       [goToTarget]                     ), \ 
    ( FuzzyAnd( obstacleClose, isFrontLeftMoreFree ),  [turnLeft, moveUntilRightIsFree] ), \ 

    ( FuzzyAnd( obstacleClose, isFrontRightMoreFree ), [turnRight, moveUntilLeftIsFree] )  \ 

  ] 

Figure 8. Sample fuzzy rules.

one holds the list of consequents. The rules we used in our example (Figure 8) have the following
meaning:

1. If there is no obstacle close, go to the target.
2. If the front-left side is more free than the front-right side and there is an obstacle close, turn

left and continue until right sonar sensors detect no obstacle.
3. If the front-right side is more free, turn right and continue until left sonar sensors detect no

obstacle.

The antecedent of the first rule is not true when there is an obstacle close. Rules 2 and 3 make the
decision about which path to take in that case. These three rules provide the logic of decision making
for the navigation algorithm to avoid obstacles while going towards a specific point. Although this
logic is very simple, it can be improved by adding more fuzzy rules describing an optimized behavior
of the robot.

The way these rules are evaluated is shown in the evaluateFuzzyRules function in Figure 9.
This function evaluates every rule antecedent and executes the consequents of that rule whose
antecedent value is the greatest. At runtime, if the rules are modified, the changes would be
automatically reflected in the behavior of the robot. The main move function is shown in Figure 9.
This function provides the functionality to make the robot advance toward the target position. The
rules are evaluated while the objective is not reached.

Since Python supports first-class functions (i.e., functions can be treated as first-class
objects), fuzzy rules can be defined with variables representing predicates (obstacleClose,
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def move(xPos, yPos): 

    global x, y 
    x, y = xPos, yPos 

    while not isTargetReached(): 

        evaluateFuzzyRules(rules) 
 

def evaluateFuzzyRules(rules): 

    values = [] 
    # Evaluates all the antecedents 

    for rule in rules: 

        values.append(rule[0]()) 
    # Gets the consequents with max antecedents 

    consequents = rules[values.index(max(values))][1] 

    # Calls the consequents 

    for consequent in consequents: 
        consequent() 

 

Figure 9. Evaluating fuzzy rules in Python.

class FuzzyNot: 

    def __init__(self, function): 
        self.function = function 

    def __call__(self, *args): 

        return 1 - self.function() 

class FuzzyAnd: 

    def __init__(self, function1, function2): 
        self.function1 = function1 

        self.function2 = function2 

    def __call__(self, *args): 
        return min(self.function1(), self.function2()) 

 

Figure 10. Sample fuzzy operators.

isFrontLeftMoreFree and isFrontRightMoreFree) and actions (goToTarget,
turnLeft, moveUntilRightIsFree, turnRight and moveUntilLeftIsFree).
Making use of the call reflective method, it is possible to define operator objects and use
them as functions. This allows using either functions or fuzzy operators as antecedents. Sample
code of two fuzzy operators is shown in Figure 10. The fuzzyAnd operator was implemented as
the minimum of both values, and the fuzzyNot as the difference to one. It is worth noting that
operators can be combined passing operator objects (instead of functions) as parameters to their
constructors because of duck typing.

The code in Figure 11 shows the predicate and action functions used in the fuzzy rules defined.
These functions were developed making use of primitives of two different namespaces. The first
namespace, Sonar, implements functions to control the sonar sensors in the robotic platform.
Sonar was used in our prototype to measure distance to objects in order to avoid obstacles. The
robotic platform has 15 sonar sensors around its base. By retrieving information from the appropriate
sonar sensors it can be known whether there are any obstacles, and where they are. The Sonar
namespace provides the getFromDevice function that receives an integer as an argument with
the number of the sonar sensor to be queried. The second namespace used is Navigation that
provides positioning functions such as goTo (to move to specific coordinates) or setSpeed (to
accelerate or decelerate the robot).

4.1.4. Event Management

The adaptive dynamic layer permits any single function to subscribe to a concrete event,
complementing the framework services and primitive management provided by this layer. In
addition, new events can be added at runtime, and programmers can dynamically access them.

Following with our example, let’s suppose that we have an artificial vision primary module
capable of detecting the face of a person. At the moment the face is recognized, the artificial vision
primary module triggers an event with the data of the face. Figure 12 shows an example subscription
to a concrete event in the adaptive dynamic programming layer:

1. Authentication is performed in the first place. Afterwards, prioritization is established to the
maximum, and asynchronous execution mode is chosen. With these settings, the Greet task
can be executed in parallel with a navigation task that may be running in the framework. If the
robot is performing any other task at the moment the event is triggered (e.g., moving towards
any point), it will be able to look to the face detected and greet at the same time, without
having to stop its navigation.
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sonar = Sonar() 
navigation = Navigation() 
minFrontDist = 1 
speed = 0.600 
turnRate = 10 
def rightObstacle(): 
    return (sonar.getFromDevice(6) < 2*minFrontDist) | 
           (sonar.getFromDevice(7) < 2*minFrontDist) | 
           (sonar.getFromDevice(8) < 2*minFrontDist) 
def leftObstacle(): 
    return (sonar.getFromDevice(0) < 2*minFrontDist) | 
           (sonar.getFromDevice(1) < 2*minFrontDist) | 
           (sonar.getFromDevice(15) < 2*minFrontDist) 
def fuzzyLeft(): 
    return ( sonar.getFromDevice(0) +  
             sonar.getFromDevice(1) ) /10 
def fuzzyRight(): 
    return (sonar.getFromDevice(6) + \ 
            sonar.getFromDevice(7))/10 
def isFrontLeftMoreFree(): 
    return fuzzyLeft() > fuzzyRight() 
def isFrontRightMoreFree(): 
    return not isFrontLeftMoreFree() 

def obstacleClose(): 
    return sonar.isDistanceToObstacleLessThan(\ 
                minFrontDist) 
def moveUntilLeftIsFree(): 
    while leftObstacle(): 
        goOn() 
def moveUntilRightIsFree(): 
    while rightObstacle(): 
        goOn() 
def goOn(): 
    navigation.setSpeed(speed, 0) 
def turnLeft(): 
    while obstacleClose(): 
        navigation.setSpeed(0, turnRate) 
def turnRight(): 
    while obstacleClose(): 
        navigation.setSpeed(0, -1 * turnRate) 
def goToTarget(): 
    global x, y 
    navigation.goTo(x,y,0) 
def isTargetReached(): 
    global x, y 
    return (navigation.getDistanceFrom (x, y) <= 1) 

 

Figure 11. Fuzzy helper functions.

# Authentication and Priorization 

authenticate("admin", "defaultPassword") 

setTaskType(RunnablePriority.MAX, ASYNCHRONOUS_TASK, "Greet") 

# Event Handler 

def handlerOfFaceDetectionEvent(data): 

    speech = Speech() 

    speech.say("How are you " + data.name + "?") 

# Event Subscription 

event = FaceDetectionEvent(handlerOfFaceDetectionEvent) 

Figure 12. Face detection event.

2. Afterwards, the function that handles the event is defined. This function instantiates a
namespace of primitives called Speech. This namespace performs tasks of voice speech
synthesis through the say primitive, which receives a text and reproduces it by simulating a
human voice, greeting the recognized person.

3. The last statement subscribes the previous function to the face detection event. Therefore,
when the event is thrown, the handlerOfFaceDetectionEvent function will be
automatically called.

We have used a double Observer design pattern in the design of the event management
subsystem [17]. First, the framework acts as the listener of the events thrown by all the primary
modules. Second, the service modules act as subscribers of events triggered by the framework.
In Java, when a service module requires a subscription to a concrete event, it must provide a
class implementing the Observer interface supplied by the framework. This interface forces to
implement the method that the framework will use to notify the service module when the event is
triggered. Therefore, it is necessary to create a Java class, when the real purpose is to implement a
single method. This is not necessary in Python because of duck typing.

In order to undertake the goals of event management, generative programming and computational
reflection were used. By applying generative programming and structural reflection, each event in
the framework corresponds to a generated Python class. These classes implement the Observer
interface provided by the framework. When an instance of any of these event classes is created, a
subscriber for that event is also registered. The constructor of this class receives a Python function
as parameter. When the framework notifies the occurrence of an event, the subscriber delegates its
management to that function.
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Due to the dynamic discovery and the event generation code, it is possible to add new event
types at runtime without having to specify at design time all the events offered by the framework.
Furthermore, simultaneous tasks can also be executed, making the most of the prioritization and
synchronization features provided by the framework.

4.1.5. Remote Reprogramming

Until this point, we have explained how the structure and behavior of the generated code that
wraps the primitives and events improves code simplicity and dynamic adaptability. In this section,
we describe how to make use of these features using the remote reprogramming engine provided by
the framework. The remote hot-reprogramming subsystem allows the introduction of new behavior
guidelines at runtime, not foreseen at design time, which might run in parallel with existing tasks.
This is a valuable feature to facilitate the implementation of runtime adaptable services.

Dynamic languages provide interesting features to be used for runtime adaptation and hot
reprogramming. Introspection can be used to know the structure of each component. Intercession
and dynamic code generation are two valuable tools to adapt running components. As an example,
a running application can be adapted by replacing the code of one of its methods (structural
intercession) with a new source code implementation (dynamic code generation and evaluation).

Applications developed in a dynamic language can use the adaptive layer to offer a higher level
of abstraction. Since their code is executed by the Java virtual machine, it can directly access the
services in the framework. For instance, the authentication and authorization services used in hot
reprogramming are those offered by the framework (Figure 5). Moreover, the execution of the source
code is performed in a controlled way: exceptions thrown by syntactic and semantic errors are
dynamically handled by the framework, aborting the execution of the invalid programs.

The higher level of abstraction commonly offered by dynamic languages, plus the flexibility
of their dynamic type system commonly involve reducing the source code required to program
new services. In addition, since they are not compiled statically, they facilitate interactive
hot reprogramming. They can also be used as scripting languages to “glue” together existing
components and services, by simply describing the logic of a service that orchestrates existing
functionalities.

The framework exposes one Web service for the addition and deletion of service modules from
a remote system, which, after authorization, can send the source code to the framework execution
engine. The code received is added to the task queue, being executed according to its priority and
synchronization settings. Following with our example, a Reminder service module that reminds
patients to have their medicine can be added at runtime by means of the remote reprogramming
feature of the framework. Figure 13 shows the source code we have used to develop the reminder
scenario.

1. This module imports the FuzzyNavigation component shown in Section 4.1.3 and
authentication in the framework is then performed.

2. Next, it is specified that the task is a TRANSACTIONAL TASK. This execution mode
allows obtaining the execution control and avoids other synchronous tasks to interrupt it,
notwithstanding the parallel execution of other asynchronous tasks. Therefore, the Reminder
module could be loaded and executed at runtime, while the Greet asynchronous task
(Section 4.1.4) is being executed in parallel. It could happen that, when the robot is going
to remind someone to take his or her medicines, a face is detected and, without interrupting
its navigation task, the robot greets the person (at the same time it is moving around).

3. An instance of the Speech namespace is created.
4. The patientLocatorWS reference points to a Web service that provides the coordinates

of patients (in Section 4.1.6 we detail how Web services are implemented in the adaptive
programming layer).

5. Then, a getPosition function that retrieves the coordinates of a patient passing his or her
identification is defined, returning a tuple with the x and y values (the positioning mechanism
is explained in Section 4.1.6).
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from FuzzyNavigation import * 

# Framework Initialization 

authenticate("admin", "password") 

setTaskType(RunnablePriority.ONE,TRANSACTIONAL_TASK,"Reminder") 

# Global variables 

speech = Speech() 

patientLocatorWS = WebService(WSDL_URL) 

PATIENT_ID = "1" 

fuzzyNavigation = FuzzyNavigation() 

def getPosition(id): 

    position = patientLocatorWS.getPosition(PatientId = id) 

    return position.getX(), position.getY() 

# Main program 

x, y = getPosition(PATIENT_ID) 

while not isTargetReached(): 

    fuzzyNavigation.evaluateFuzzyRules(x, y) 

    x, y = getPosition(PATIENT_ID) 

speech.say("It is time to have your medicine") 

end() 

 

Figure 13. Reminder module.

6. The main program contains a loop that iterates while the target is not reached, performing one
more step through the FuzzyNavigation component.

7. Once the loop ends, the robot is situated near the patient. The robot informs the patient by
voice that it is time to have his or her medicine, using the say primitive.

8. Finally, the framework resources engaged by the transactional task are released by the end
function.

The reprogramming process is initialized by the remote system, which requests the framework
for an authorization credential. Then, the remote system passes the application source code like the
one in Figure 13. The framework runs the code performing the dynamic authorization checks. The
Greet asynchronous module shown in Section 4.1.4 will be executed in parallel (asynchronously).
Thus, if the robot bumps into someone while it is heading the patient, it would say hello to him or
her without interrupting its navigation—the Greet module is asynchronous.

This hot reprogramming system allows the use of runtime emerging primitives, components and
events, fulfilling the adaptability requirements of runtime adaptable systems; not only discovering
services at runtime, but also adding new programs dynamically. It allows implementing services
that fulfill new requirements emerging at runtime (e.g., the Reminder module) without stopping the
system execution. Reprogramming could be carried out by a person, system or device, implying
an autonomously readjustment of the robot. Computational reflection and generative programming
have significantly facilitated its implementation.

4.1.6. Remote Bidirectional Communication

The Reminder module can be added at runtime as a service module, so that the robot locates
the position of the patient, goes to the position obtained, and performs some task (like providing
speech reminder to the patient). Furthermore, in our scenario patients could be moving, so the robot
has to adapt its destination while avoiding any obstacles found in its path. The patient location
device would be any (indoor) positioning system that patients wear. It is accessed through a Web
service whose URL is initially unknown by the robot. We simulate the patient location device with a
simple graphical application that allows us to simulate the change of the patient position at runtime.
The coordinates of patients are retrieved from a Web service containing their location. This service
could be part of an application over the network, or even the remote application that performed
the dynamic reprogramming of the Reminder service. In that case, bidirectional communication
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Figure 14. Bidirectional hot reprogramming.

has to be provided: in the first direction, the remote application adds the reminder code in the
framework; in the second one, the inserted code asks the remote system for the patient coordinates.
This bidirectional communication is shown in Figure 14. Notice that this way of bidirectional
communication is more powerful than parameterizing a communication service, because it allows
the incorporation of entirely new functionalities that had not been taken into consideration at design
time.

The framework provides the necessary infrastructure to call new Web services discovered at
runtime, exposing them as new functionalities grouped into namespaces. Generative programming
is used to create proxy classes for accessing Web services operations. Apache Axis [34] is employed
to dynamically generate the Java proxy classes. Axis is an implementation of the SOAP protocol
provided by the Apache Software Foundation. The wsdl2java tool is used to generate Java code.
This tool provides a set of classes and structures that act as proxies and skeletons of remote Web
services described by WSDL documents. Operations described in WSDL files generate bean classes,
representing parameters of operation as properties of each bean class. Making use of these standard
technologies, any remote application, system or device that implements W3C standard Web services
could be used in our robotics framework. Note that the service could be provided by an entity (person
or device) while the robot is executing other applications.

The WebService object in Figure 13 (patientLocatorWS) shows how simple it is to add
a reference to a new Web service using a dynamic language to program the adaptive layer. The
WebService receives a WSDL URL and generates all the necessary code to access that Web
service. The advantage is that dynamic languages facilitate the dynamic generation of code to
transparently access services unknown at design time. This means that the value of WSDL URL
may be unknown statically because the code pointing to that WSDL is created dynamically (hot
reprogramming). Through the use of generative programming and structural reflection, a Python
class with the skeleton code shown in Figure 2 is generated. The WebService constructor returns
an instance of the generated class. As shown in Figure 13, the operations in a Web service are simply
offered as nonexistent methods using behavioral reflection.

The main issue at this step came from the Java code generation, where operations in Web services
are wrapped by Java bean classes. Since parameters are modeled as properties of the Java beans, the
order of parameters in each method is lost. Therefore, when it is required to call an operation in a
Web service, we should first create an instance of the Java bean that represents that operation. Then,
the invocation to the appropriate setter methods should be done; one invocation for each parameter.
Although we should not follow the specific order defined in the WSDL, we have to make sure that
suitable values are assigned to each single property that represents a parameter of the operation.

To solve this problem, we generate Python code that makes use of the named parameters
feature of Python, obtaining very simple code. The third argument of the Python call method
(**kwargs) is a dictionary structure that contains named parameters received in the invocation.
Names of setter Java methods are generated from names of Python parameters and searched in the
Web service class through introspection. Once generated, the operations are invoked with the value
of the parameter received in Python (e.g., PatientId in Figure 13).

Generative programming and computational reflection were used to dynamically discover new
Web services. This way, any application in the network that implements a standard Web service
could be dynamically discovered and called, facilitating the implementation of runtime adaptable
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Number of Executions
1 10 100 1,000

Java 237 2,178 21,647 216,512
Python 387 2,443 23,549 233,054
% Python slower 63.29% 12.17% 8.79% 7.64%

Table I. Execution time (in milliseconds) of source code in Figures 4 and 6.

services in our robotics framework. A high level of simplicity is offered to program the adaptive
dynamic layer, requiring only one line of code to create a new Web service object. Method
invocations are dynamically interpreted as operation calls to the remote Web service by means of
behavioral reflection.

Currently, we are using introspection to inspect the syntactic description of Web services. Future
research will be aimed at consulting semantic information when semantic Web services are used
instead. This type of services specifies not only its syntactic information but also the meaning of
its messages. Semantic Web services use standards for the interchange of semantic information,
which facilitates the communication between service producers and consumers. A common way to
specify the semantics of a Web service is using OWL (Web Ontology Language) [35] to describe
ontologies. If OWL were used to describe the semantics of remote devices or systems, the robot
could use a platform for the discovering of service semantics, such as SSWAP (Simple Semantic
Web Architecture Protocol) [36], to know when a remote service is valid for its purposes. This
would represent an important progress in the development of context-aware robotic systems.

4.2. Runtime Performance and Memory Consumption Assessment

Service modules and components coded in Java are directly executed by the framework. However,
when a dynamic language such as Python is used, a runtime performance penalty could be
introduced. In that case, the framework creates a Java module that wraps the Python implementation,
loads the appropriate language engine of the Java Scripting API, and executes the Python
application. This process causes a runtime performance penalty to be evaluated.

We have evaluated the runtime performance of the Java task shown in Figure 4 and its
corresponding translation to Python displayed in Figure 6—the invocation to Thread.sleep in
Figure 4 has been removed to make it run faster. We have run both tasks instrumenting the code
with hooks to measure execution time, recording the value of the processor time stamp counter at
the beginning and at the end of the task. This first evaluation measures the execution time of each
task, without considering the above mentioned penalty of loading the Scripting API.

The first column in Table I shows the execution time of both tasks. In this case, Python is 63.29%
slower than Java. The following columns display the same values incrementing the number of
executions of the task. The code has been placed in a loop of 1, 10, 100 and 1,000 iterations. This
common method of evaluation makes the Java Virtual Machine (JVM) reach a steady state [37],
causing hot-spot optimizations to be applied at runtime. Incrementing the number of iterations, the
performance penalty decreases to 12.17%, 8.79% and 7.64% running 10, 100 and 1,000 iterations,
respectively. This performance reduction may be caused by the hot-spot optimizations introduced
to the JVM when executing reflective code [38]. The Java Scripting API executes Python code with
the Jython runtime, which makes wide use of Java reflection [39].

We have also evaluated the whole process of running a Python service module, including the
dynamic loading of the Java Scripting API. In this case, the execution time of any task is increased
with a constant value of 1,686 milliseconds. This cost is a constant penalty per Python service
module.

We have measured memory consumption using the Runtime class of the Java standard library.
The framework requires 2.54 MBs, while the execution of the Java module shown in Figure 4 uses
97.25KBs. In the case of Python, the Java Scripting API requires 6.4 MBs of memory including
the Java execution engine of Python (i.e., Jython). This value remains constant independently of the
number of Python services executed on the framework. The Python service displayed in Figure 6
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uses 750 KBs of memory. We think this difference may be caused by the entities used by Jython to
simulate the Python computational model on the JVM, plus the classes we generate at runtime to
provide transparent access to primary modules (Section 4.1.2).

5. COMPARISON WITH RELATED WORK

The objective of this section is twofold. First, to analyze the existing related work; second, to
compare the fulfillment of the requirements we have identified at the beginning of this paper
(Section 1.1). The objective of this comparison is not to say which approach is best, but to
compare the suitability of existing approaches for hot reprogramming a robotics framework (the
main contribution of this paper). This is the reason why some important issues such as runtime
performance, discussed in Section 4.2, are not discussed here.

We have qualitatively assessed our TIC4BOT system together with some representative
alternatives for creating highly adaptable robotic systems. The evaluation has been done based on
the literature survey. We first analyze existing service-oriented component-based software systems
(Section 5.1). Then, we examine those systems that employ dynamic languages for programming
runtime adaptable robotics services (Section 5.2). Finally, we discuss other approaches that
implement robotic systems providing a high level of runtime adaptability (Section 5.3).

The features we have used in the comparison are those we think a highly adaptable robotic system
should fulfill, explained in Section 1.1:

1. Dynamic hot reprogramming of the system.
2. Homogeneous discovering of dynamic services.
3. Interactive, compact and straightforward programming of services.
4. Discovering and interaction of running applications.
5. Standards-based bidirectional communications between the system and dynamically

discovered remote devices / systems.
6. Dynamic adaptation of existing services.
7. Language neutrality.
8. Non-proprietary standard language.
9. Visual domain-specific language.

We have added the three last requirements that, although they are not related to runtime
adaptability, we think they facilitate the task of programming. Feature 7, language neutrality,
is concerned with the possibility of developing robotics services in any programming language.
Programmers may select the language they are more comfortable with, increasing their productivity.
TIC4BOT fulfills this requirement as a result of employing the Java Scripting API. Feature 8,
non-proprietary standard language, is related to the use of existing standard languages, preferably
widely-used in the development of software. As we have mentioned in this paper, we think this
feature involves the reutilization of existing source code and components, plus better accessible
documentation. Finally, the visual domain-specific language requirement (feature 9) is focused on
allowing the runtime programming of new services in a visual language that could be understood
by non-programmers. Although we are currently working on this requirement (see Section 6), our
system does not provide this feature yet.

Table II summarizes the analysis made. Systems have been analyzed from the point of view of
the framework—not from the point of view of the systems built on the framework. Each column
corresponds with each feature. The two following subsections explain in more detail the analysis of
each system.

5.1. Service-Oriented Component-Based Software Systems

Service-oriented component-based systems allow for dynamic rewiring of services and replacing of
components and services at runtime. They provide parameterization at runtime and task coordination
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functionality. Component-based service-oriented software systems are broadly used in robotics,
providing a high level of runtime adaptability.

Zhang et al. studied a context-aware intelligent robot control system [40]. They defined a service-
based architecture to break the tight coupling between components, providing a higher abstraction
layer by means of services. They used the Jini middleware [41] to federate groups of devices and
components into a single, dynamic and distributed robot service coordination system. The use
of Jini provided the dynamic discovery of services, including robot, sensors and other services.
One important feature of the proposed system is that components can be added and removed at
runtime [40]. When services or robots are plugged into the system, they can be directly used by
clients and other services. It is worth noting that Jini defines a programming model which exploits
and extends Java technology to enable the construction of secure distributed systems, consisting of
federations of well-behaved network services and clients. This way, the entire system is based on
Java.

Orca is an open-source software framework for developing component-based robotic
systems [42]. It intends to define and develop building-blocks that can be pieced together to form
arbitrary complex systems. The main goal is to take advantage of software reuse in robotics.
Orca relies on the Ice (Internet Communications Engine) technology, which is a proprietary
middleware that is used for defining contracts between servers and clients, and compiles it into
some programming languages. It aims to be as broadly applicable as possible and that is the reason
why authors did not make assumptions about component granularity, system architecture, the set of
provided or required interfaces, and the internal architecture of the components. As a result, Orca
does not offer full native support for programming runtime adaptable services.

Fawkes is a robotics framework which follows the component-based software design paradigm
by featuring components with communication interfaces [43]. It includes components for timing,
logging, data visualization, software configuration, or decision making. The main features it has
are: 1) a well-defined component concept; 2) a hybrid blackboard / messaging infrastructure for
communication; 3) well-defined interfaces; 4) runtime loadable plug-in mechanisms; 5) multi-core
computation facilities; and 6) a network infrastructure for communicating with remote software
entities. Their goal is to design a framework to be highly flexible and portable to various robot
platforms, adding new functionality over time. The components are implemented as dynamically
loadable libraries, implementing a particular interface which gives access to descriptive and
dependency information. The Fawkes core provides a blackboard that serves as the centralized
storage unit. Services can be discovered at run-time by listing the blackboard interfaces, which
can then be instrospected with a specialized API. The changes on the behavior of programs are
automatically reloaded, facilitating interactive and straightforward programming of services.

ROS is a framework for robot software development, providing operating system-like
functionality on the top of a heterogeneous computer cluster [9]. It supports services such as
hardware abstraction, low-level device control, message-passing between processes, and package
management. ROS has been designed to be language-neutral, currently supporting C++, Python,
mainly, and Octave and Lisp [9]. Python has been heavily used to program different robots such
as the Personal Robot 2 (PR2), producing less verbose applications than C++ [44]. Rather than
providing a C-based implementation with stub interfaces generated for the offered languages, ROS
has been implemented natively in each target language. To support cross-language development,
ROS requires the use of a language-neutral IDL (Interface Definition Language) to describe the
messages sent between modules. The IDL uses text files to describe fields of each message.

SmartSoft is a component-based robotics software system based on communication patterns [22].
Its component model includes standardized ports for component interaction and configuration
during runtime as well as an internal state automaton. The semantics of the interface of components
is predefined by the communication patterns, independently of the underlying implementation
technologies. This allows the separation between component internals and the externally visible
component interface. Dynamic wiring of components at runtime is explicitly supported by the
wiring pattern. The benefit is the implementation of loosely coupled and distributed systems based
on standardized components whose interaction can be adjusted according to the current context and
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Approach Fea.1 Fea.2 Fea.3 Fea.4 Fea.5 Fea.6 Fea.7 Fea.8 Fea.9
CAMUS d d r a d d r r r

DCD-VM d d d d d d d r a

Fawkes r a a a d a d a d

Lacey et al. d d d d d d d a d

Nao / HSM r a a a d a d a a

Orca r a a a d a r r d

ORCOS r a d a d a a a d

Pyro a d a a d a d a d

RoboEarth a a r a r a a d r

Rönning et al. d d d d d d d a d

ROS / SMACH r a a a d a r a a

SmartSoft / TCL a a a a r a d r d

TIC4BOT a a a a a a a a d

Urbi r d a a d r d r r

Zhang et al. r a d a r a r a d

Table II. Highly adaptable requirements fulfillment of related work.

requirements [45]. The sequencing layer of SmartSoft is implemented using the SmartTCL dynamic
language [46], which is an extension of Lisp (see Section 5.2).

The OROCOS (Open RObot COntrol Software) project aim is to develop a general-purpose, free
software, and modular framework for robot and machine control [47]. The OROCOS framework
is developed in C++ under an open source license, and provides high modularity and flexibility
because it is based on components. Components are software objects that can be dynamically added
and removed from a network and offer their services through a neutral, programming language
independent, CORBA interface. There are five distinct ways in which an OROCOS component can
be interfaced: through its properties, events, methods, commands and data flow ports. OROCOS
does not impose a specific programming language. The philosophy behind this strategy is that the
best language for a job should be used, including scripting languages [47].

The difference between these service-oriented component-based systems and the approach
presented in this paper is the mechanism used to obtain dynamic adaptability. In these systems,
components (and services) may be added, replaced, removed and rewired at runtime to provide
runtime adaptability. This adaptation is commonly performed by a middleware or framework.
Dynamic languages also provide these features, but they are controlled by the dynamic language
itself instead of by a middleware. The addition of new components is obtained with dynamic code
evaluation—one component may even create another component at runtime. Inspection of new
components is provided by the introspection services of the language, so no language for defining
component interfaces (e.g., CORBA IDL) is needed. The adaptation of existing components is
obtained with structural intercession, modifying the structure of components at runtime. Rewiring
is achieved with behavioral intercession by changing semantics of the message passing mechanism.
These operations are controlled by the interpreter of the dynamic language, because these reflective
features are part of its computation model. The examples presented in this paper have also shown
how dynamic languages facilitate the interactive, compact and straightforward programming of
components and services, with lower runtime performance and compile-time error detection.

5.2. Dynamic Languages in Robotic Systems

Dynamic languages have been previously used in different robotics scenarios. An example is the
SmartTCL language [46], an extension of Lisp that was used to implement the sequencing layer
of SmartSoft, a three layer robotic architecture (Section 5.1). The sequencing layer is the place to

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
Prepared using speauth.cls DOI: 10.1002/spe



24 F. ORTIN, S. MENDEZ, V.GARCÍA-DÍAZ, M. GARCIA

store procedural knowledge on how to configure skills to behaviors. Due to the dynamic features of
SmartTCL, the plans stored inside the task coordination module can be easily modified at runtime.

The dynamic language Lua has also been used to implement the behavior engine of the humanoid
robot Nao [48] over the Fawkes component-based framework [43]. The formalism of Hybrid State
Machines (HSM) was used to bridge the gap between high-level strategic decision making and low-
level actuator control. The model of HSMs was extended with dependencies and sub-skills to call
the behaviors or skills hierarchically. Lua turned out to be an expressive language to implement
these HSM skills.

The SMACH (State MACHine) library is a scalable Python-based library for hierarchical state
machines that, the same as SmartTCL and Lua, is independent of the system in which it is
used [49]. It allows designing, maintaining and debugging large and complex state machines.
Robotics frameworks such as ROS (Robot Operating System) [9] have been accurately integrated
with SMACH.

UrbiScript [10] is an orchestration language for robotic systems, used to glue together C++
components developed for the Urbi (Universal Robot Body Interface) robotic platform [50]. Usually,
the CPU-intensive algorithms are implemented in C++ and the behavior part is left to UrbiScript
(a proprietary programming language) because it is more flexible and easier to maintain. One
important feature of UrbiScript is that it allows dynamic interaction during program execution,
and provides a simple event-based programming as part of the language semantics. The use of C++
to develop components (known as UObjects in Urbi terminology) limits the dynamic adaptation of
their structure, even though a dynamic language is used to glue them together.

Pyro (Python Robotics) is a programming environment for exploring advanced topics in artificial
intelligence and robotics, facilitating the creation of interfaces for accessing and controlling a wide
variety of real and simulated robots [8]. Any program that controls a robot (physical or simulated)
is referred to as a brain. Since brains are written in Python, they can use all the meta-programming
features of that language to implement runtime adaptable services. Although the system is written in
Python, it does not exploit the Python meta-programming features to provide advanced mechanisms
such as bidirectional standard communication between the system and runtime discovered remote
entities.

The common approach of these systems is using dynamic languages to orchestrate components
and services. Components are commonly developed in compiled languages such as C++, while the
coordination / behavior part is programmed in a dynamic language because it is more flexible and
easier to maintain. Therefore, these systems allow modifying the coordination tasks at runtime and
interacting with the user during program execution. Our approach is similar to these systems in
the sense that components can be developed in Java, and the coordination logic can be defined in
any dynamic language supported by the Java Scripting API. The main difference is that services
and components can also be developed in a dynamic language, and executed by the framework.
Using Python as a case study, we have shown how this approach facilitates exploiting the particular
features of dynamic languages in the development of adaptable services. For instance, we have used
the dynamic code generation and the behavioral intercession features of Python to provide a service
that dynamically creates proxy classes for accessing Web services (Figure 13). The interface of Web
services can be discovered at runtime and it can even be changed dynamically because the proxy
classes are dynamically generated. The meta-programming features of Python have simplified the
implementation of this service and its use.

Although the particular features of general purpose dynamic languages can be positively used
in the development of robotic systems, visual domain-specific languages also provide notable
benefits (feature 9 in Table II). The first advantage is that these languages can be understood by
non-programmers, facilitating the dynamic adaptation and interaction with the user. Moreover,
its domain-specific approach allows the declarative specification of how programs should behave,
making programs more compact and maintainable.
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5.3. Other Approaches to Build Runtime Adaptable Robotic Systems

In [51], the authors introduce the concept of network-based intelligent robots called URC
(Ubiquitous Robotic Companion). URC are robots that distribute their functional components
through the network, using external sensors and remote processing servers. They propose the
use of the CAMUS (Context-Aware Middleware for URC System) software framework as a
system middleware to support context-aware services for network-based robots. CAMUS acquires,
interprets and disseminates context information, offering the means for modeling the environment in
which the robot provides services. CAMUS is composed of four parts: the main server for collecting
contextual information; the service agent for executing the functions of legacy applications and
sensors; the service agent manager for controlling agent managers within the environment; and a
communication framework for handling long-term operations of robots. It has been developed to
support programming languages such as Java and C++. They also define the PLUE (Programming
Language for Ubiquitous Environment) to describe context-aware services for robots. PLUE is a
Java extension that adds rule-based reasoning to Java using the Jess rule engine [52]. Since the
PLUE compiler is implemented as a Java preprocessor, it is not easy to add new PLUE rules at
runtime.

Röning and Riekki propose the architecture of a context-aware mobile robot system for managing
and using services on behalf of the user [53]. Context-aware mobile robots perceive environmental
signals, infer the context (i.e., the state of the system and its local environment) from these signals,
and calculate appropriate actions for the detected context. The Genie of the Net architecture is
composed of four agents: sensor, user interface, active user and context agent. The system collects
information from sensors and databases, recognizes context based on this information, chooses
relevant actions to serve the user on the basis of the recognized context, and performs the chosen
actions. The actions to be performed by the robot can only be reprogrammed at runtime when they
are foreseen in advance (prior to execution). If a new functionality is required while the robot is
running, after compiling the source code of the new service, it is necessary to stop its execution to
deploy the new functionality.

Lacey and MacNamara developed a smart walker mobile robot designed to provide runtime
adaptable shared control of a robot mobility assistance to the frail elderly visually impaired [5].
They used a Bayesian network to provide context-aware shared control of the robot. The system is
divided into five predetermined modules: 1) risk assessment for collision avoidance; 2) user interface
for user input and audio feedback; 3) feature extraction for corridor and door features; 4) navigation
for walking; and 5) action selection for setting the goal points for the navigation module. They
combined user input with sensor data to effect context-aware goal selection for a mobile service
robot. The user goals were modeled as goal directions to the navigation system. The probability of
these goals is influenced by the probabilities in their parent nodes. These probabilities are fused to
produce an estimate of the user goals (i.e., what robot action the user wants to take next).

Bordignon et al. [54] propose a solution for updating individual modules in a robotics framework
based on a virtual machine design. The virtual machine (called DCD-VM) is programmed in a
high-level role-oriented domain-specific language that allows the declarative specification of how
programs should be deployed (low level code is programmed in the C programming language).
That way, the solution enables fast and incremental dynamic updates without needing to restart
the system. Their work focuses on the ATRON modular robot [55], which is a cheap and highly
resource-constrained hardware designed to be cost-effective. For its part, DCD-VM enables efficient
distribution of small bytecode programs, supporting live update of controller code in running
modules—module interfaces cannot be modified at runtime.

RoboEarth is a World Wide Web for robots, representing a distributed database repository where
robots share data to learn from each other about their behavior and environment [56]. RoboEarth
is intended to be a Web community by robots for robots to autonomously share descriptions of
tasks they have learned, object models they have created, and environments they have explored. It is
implemented based on a three-layered architecture. The server layer stores the global world model
including objects, environments and actions. This information is linked to semantic information (in
OWL) and provided by means of Web services. The hardware-independent middle layer provides
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generic reusable components to allow any robot to interpret RoboEarth action recipes. These action
recipes describe robot tasks in a human-readable high-level proprietary language [57]. The third
layer implements skills and provides a generic interface to robot-specific hardware-dependent
functionalities via a skill abstraction layer.

The main similarity between RoboEarth and the system presented in this paper is the publication
of robotic components as Web services, where the last version of components is provided due to
their dynamic inspection. We perform this inspection by means of introspection, whereas RoboEarth
implements a distributed repository of component interfaces. Language neutrality of RoboEarth
components is achieved by the definition of a high-level proprietary language [57] that should
be translated into the particular language used in each robotic platform. On the other hand,
our framework employs the Java Scripting API to execute any dynamic language over the Java
platform. A distinguishing feature of RoboEarth is the semantic information stored to describe the
components. This information helps robots to dynamically determine which components can be
safely used for a specific purpose.

6. CONCLUSIONS AND FUTURE WORK

An example scenario has been developed to discuss how the distinguishing meta-programming
features of dynamic languages can be used to build highly adaptable hot-reprogramming services
in a robotics framework. The use of Python has allowed us to develop an adaptive dynamic
programming layer to create highly runtime-adaptable services. This layer offers dynamic runtime
discovery of new services and provides a transparent programmatic access. The framework permits
the programming of services in Java when runtime adaptability is not a necessary issue, offsetting
the runtime performance penalty commonly shown by the use of dynamic languages. In our example
scenario, we have used the SCITOS-G5 platform. The robot processing capabilities have greatly
sufficed the runtime performance requirements.

The use of different levels of computational reflection and generative programming has provided
the desired degree of runtime adaptability. Introspection has been used to dynamically discover
the services published by both the framework and external devices. We have applied generative
programming to generate wrapper Python classes around these services. Generated classes are
extended by means of structural intercession. The semantics of the message passing mechanism
has been modified (by means of behavioral intercession) to implement a lazy method search in
the generated classes. Dynamic duck typing system facilitates the interactive hot reprogramming
of services, and makes the source code more compact and simpler. All these particular features
of dynamic languages have been used to develop a dynamic adaptive layer that facilitates the
development of highly runtime adaptable services.

We are currently working on the development of a visual programming language to facilitate the
programming of the robot at runtime, making use of the hot re-programming subsystem. The visual-
language compiler will generate Python code, sending it to the robot when the programmer wants
to run it. With this approach, we will obtain the benefits of both a straightforward domain-specific
visual language and a widely-used versatile general-purpose one.

In the future, we plan to investigate on the application of automatic machine learning [58], making
the system able to learn the behavior of users on simulated scenarios. A runtime performance
assessment comparing our framework with existing robotic platforms is another future activity to
be done. Finally, services for other concrete scenarios, e.g. the assistance to the frail elderly visually
impaired, will also be defined.

The source code of the whole example presented in this paper is freely available at http:
//www.reflection.uniovi.es/tic4bot. Although the robotics framework is not freely
downloadable because it belongs to the TreeLogic Company, the URL above provides the source
code of the dynamic adaptive dynamic programming layer, and a demonstrating video showing the
example presented in this paper, running on the robotics framework with Player / Stage.
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