
��������	�
������
��	�����
��������������
������������������������	
���

Ortín Soler, Francisco
Computer Science Department, University of Oviedo

Calvo Sotelo 33007, Oviedo, Spain

And

Martínez Prieto, A. B., Álvarez Gutiérrez, D., and Cueva Lovelle, J. M.
Computer Science Department, University of Oviedo

Calvo Sotelo 33007, Oviedo, Spain
Phone Number: +34 985 10 3172. Fax Number: +34 985 10 3354

��������

Currently, using OODBMSs or persistence systems lacks
flexibility due to the need of including additional code not
related to the functionality of applications and learning of new
APIs.

This paper explores the possibilities of an integral object-
oriented system, based on an abstract machine with reflection.
This permits the addition of the property of implicit persistence
to the system, so that the user does not need to take special
action to make objects persistent. A database engine is part of
this persistence mechanism as an integral element of the
system.

Computational reflection is defined as an inherent feature of
the system. Due to this kind of reflection, both the database
engine and the programming of applications are very flexible.
Database engine properties can be dynamically modified in
order to satisfy application requirements.

Reflectivity accounts for the design of a middleware that is
able to achieve an implicit persistence system for the
programmer in collaboration with the database engine.
Transparent runtime selection of a level of persistence for the
objects of an application without having to resort to additional
code is now possible. The result is a very high-level object-
oriented programming, very portable and with runtime
flexibility.

��������: Abstract Machine, Reflection, Implicit
Persistence, Integral Object Oriented System, Database Engine.

��� � ����!���� 

	
����	�����������

Object-Oriented Database Management Systems
(OODBMSs) were primarily motivated by new kinds of
applications for which the Object-Oriented model was better
suited for the semantics of the data to be stored. These systems
have a common feature: using the OO model and integration
with existing (persistent) languages [9]. Now "classic"
examples of these systems are ObjectStore, O2, GemStone,
Poet, and Versant. Differences between systems were basically
the election of the supported programming and query

languages. This was also the cause of a limited portability. To
alleviate this, the Object Database Management Group
launched a standarization process (ODMG 1.0 and 2.0) [8, 10].
Nowadays, the majority of these systems claim to be ODMG
compliant.

An evolution of relational systems towards extended
relational systems is carried in parallel with these OODBMSs
systems. These systems try to combine the OO model with the
existing relational model. Changes in the storage and data
managers of the relational DBMS are carried as needed.
Examples of these systems are UniSQL and Persistence.

������������������������������

Currently, and in co-existence with the above technologies,
there is an increasing interest in incorporating support for
persistent objects into (OO) programming languages.

Taking Java as an example, there are many different
persistent Java flavours to choose. ������ (Persistent Java) [5]
provides a persistent programming environment for the Java
programming language based in a orthogonally persistent
variant of the Java platform and machine.

6RXUFH�&RGH

3UH�SURFHVVRU

&RPSLOHU

$SSOLFDWLRQ
�3URJUDPPLQJ
,QWHUIDFH��$3,)

����(QJLQH
$SSOLFDWLRQ

Figure 1 Overall structure for the inclusion of database functionality
into a programming language

Other initiatives use persistent storage engines, such as PSE
and PSE Pro [1] for Java (with a C++ version as well), that
allow to store and retrieve objects en their native format. These
persistent engines offer an API with varying learning curves
and ease of use. These APIs endow the programming language



with database functionality. Another example is Jeevan [20], a
single user object oriented database for the Java platform, that
provides a simple API of four classes and two interfaces. The
Jeevan API provides for index specification and dynamic
queries.

Other approaches translate Java objects into the relational
model. Some rely on the programmer to translate into tables
(StreamStore [32]). Others make the translation process
transparent for the user (Java Blend [19]).

����������	�
�������	������	��	���������������
��������

Figure 1 shows the overall structure for the inclusion of
database functionality into a programming language, which is
commonly accomplished by means of an API, with a pre-
processor used sometimes (i.e. extensions to the existing
programming language).

A summary of the disadvantages of this approach follows:

1. User complexity. The user has to learn the introduced API
and/or the extensions added to the programming language.

2. Legibility and maintainability suffers, as additional code,
not related to the application logic ("intruder" code), has
to be injected into the source code to have the added
database functionality.

3. Portability suffers as well. There is a big dependence on
the API used and its implementation.

4. Poor flexibility. Changes to database engine related
aspects, such as adding a new indexing technique, are
commonly made by changing and recompiling the source
code.

�������	�������	������������������	�����������	�
���
���������	����������	������	�������
���	������	��
���	��

We propose a different approach to the task of adding
database functionality to programming languages, which is
based on the notion of ���	�
�����������
�. This means that the
user does not need to take special action to make objects
persistent, no "intruder" code is needed, and so complexity,
legibility and portability problems are not a concern. The
system needs a persistence subsystem with a database engine to
accomplish this.

To improve flexibility, a reflective architecture for this
persistence subsystem is proposed, which will allow dynamic
changes to persistence related aspects (for example, dynamic
change of indexing techniques for a given application) without
changing application code. This will also allow experienced
users to directly use features of the database engine (explicit
persistence). This is researched under the experimental system
Oviedo3, which is an integral object-oriented system based on
a reflective abstract machine. The persistence and database
engine will be incorporated as an integral part of the system,
which gives additional benefits.

The rest of the document is organized as follows. Section 2
justifies the developing of an Integral Object-Oriented System
(IOOS), briefly describing the features of the system’s object
model and the abstract machine. Advantages of the structure of
the system for the database engine that will be incorporated in

the system is also described, as well as the different indexing
mechanisms that will be considered. Section 3 is devoted to the
reflection concept. A proposal for endowing an abstract
machine with structural reflection is presented. In the next
section persistence and design of the database engine for the
IOOS based on the reflection capabilities of a reflective
abstract machine is explored. Both explicit and implicit
persistence is treated. Advantages of this system such as
flexibility, uniformity, etc. are mentioned in section 5. Section
6 deals with related work in the field of reflective systems and
OO databases and implicit persistence. Finally, some
conclusions are drawn in section 7.

��� �������	
����������
�������������

The adoption of the object-oriented paradigm is not done in
an integral way in all the system components. There are
languages, databases, user interfaces, etc. using the object-
oriented paradigm, which have to change to another paradigm
to interact with other elements of the system like the operating
system. They even can have different object models. This
produces a serious impedance mismatch and interoperability
problem, for the paradigm changes and/or object translations
made depending on which element to work with. The result is a
proliferation of additional software layers trying to alleviate
these problems, but introducing in fact extra complexity in the
system.

HARDWARE

Abstract Machine
Operating System

��	�
��� and Compilers

Graphics and Multimedia Subsystems

User Interface

Figure 2 Components of the Oviedo3 System, shown in logical order of
development

An approach in order to solve this problem is to move the
OO support for the rest of the system to a common place into
the operating system. Oviedo3 [2] is a research project that
tries to build an experimental integral object-oriented system
based on that foundation. All components: user interfaces,
applications, languages, compilers, databases... and the
operating system itself share the same object-oriented
paradigm.

The system provides only one abstraction: objects.
Objects can only create new objects from a class or send
messages to others. One technique to structure an OO
operating system aimed to support an integral OO system
which offers many advantages is to use an OO abstract
machine as the substrate of the OO operating system.
This machine offers the basic object model and support
to all objects of the rest of the system, and is given a
reflective architecture for extra flexibility. The operating
system functionality (as well as any subsystem
functionality) is given by a set of user objects not



different from any other object. Thus, an IOOS ideally
provides a “world of objects” environment: a virtually
infinite space where objects live indefinitely and
exchange messages regardless of its location (Figure 3).
The evolution of CORBA and Java is pointing towards
this kind of heterogeneous distributed interoperable
object environment.

Machine Reflection

Operating System User

Computing Environment

Persistence and
Database

Figure 3 Computing environment composed of a set of homogeneous
objects

���	�� ���
���	�!����������
�	���	�!��"���

The machine ultimately provides the basic support for the
common object model of the system, which intentionally
follows the object model of the most popular OO
methodologies. The goal is to take advantage of well-
established OO concepts as well as carrying all the semantics
of the object model (used in analysis and design phases) all the
way to the implementation phase. The features the model
includes are:

•  Unique object identity (used by references);

•  Encapsulation (access to an object only through methods);

•  Classes (which are also used to derive types);

•  Multiple inheritance (is-a) relationships;

•  Aggregation (is-part-of) relationships;

•  General association (related-to) relationships;

•  Polymorphism and type checking including run-time
checking;

•  Exceptions;

•  Protection, Concurrency, Distribution and Persistence
(with database capabilities).

The machine language is a pure OO low level language. It
allows class declaration, method definition and exception
handling. Objects extending the functionality of the basic
machine provide features not provided directly by the abstract
machine.

#"����	�
��������������	"����	������������	��

The OODB engine is not an individual element inside this
integral system, like in conventional operating systems. It is an
integral part of the computation environment. Database objects
are objects just like other objets in the system (operating
system or user ones), that provides database functionality:
persistence, indexing, query processing, etc. Grouping them
into a subsystem offers convenient access to them.

The existence of an object-oriented operating system and
ultimately of an object-oriented abstract machine provides a set
of benefits for the construction of the engine [29]:

•  Seamless integration with the rest of the system. The
OODBMS can be seen as playing the part of the file
system in conventional operating systems, but with
database capabilities. The database would not be
used in isolation, but as a management system
encompassing all objects in the system. For
example, a user would find any object uniformly by
querying the database.

•  Facilitates its construction. The engine will on one
side take advantage of the structural reflection of the
machine, and on the other on some operating system
capabilities (protection, concurrency, etc.), building
on them incrementally by means of the object-
orientation present in the system.

•  Performance increase. It is not necessary to add new
software layers to conventional operating systems to
fill the semantic gap between operating system
abstractions and objects. The integral system is
already object-oriented.

•  Productivity increase. Building database
applications on this system is more productive, since
it is not necessary for the programmer to change
paradigms. Database and operating system share the
same object-oriented paradigm, which is used
uniformly in the system. For example, the same
query language would be applied to database
programming and user interface search tasks.

The engine is intended to be flexible and adaptative, using
the extensibility offered by object-orientation. Work is being
carried specially on the indexing mechanism, foundation for
the query processing system. It will be used as a testbed and an
example of this flexibility.

����$����!��"������

OO query languages have some special features to take into
account: the existence of inheritance and aggregation
hierarchies and the potential presence of method invocations.
Thus, indexing mechanisms are needed that allow an efficient
processing of queries under these circumstances. Many
indexing techniques for OO models have been proposed, which
can be classified into [7]:

a) ���
���	� These are based on object’s attributes. Further
divisions can be made: techniques that support for queries



based on the inheritance hierarchy (Single Class(SC) and
CH-Tree [22], H-Tree [12], etc.), techniques that support
the aggregation hierarchy (Nested, Path y Multiindex [6],
etc.), and techniques that support both aggregation and
inheritance hierarchies (Nested Inherited [7], etc.).

b) ���������	� These provide an efficient execution for
queries that include method invocations. Method
materialization [21] is one of these techniques.

So, depending on the most frequent type of query on a given
class (or class hierarchy), some techniques are more efficient
than others. However, most of the existing OODBMS use only
a fixed subset of these indexing mechanism, and the user has
neither the option of selecting her preferred indexing
mechanism, nor the chance of adding new schemes.

The proposed database engine will have the following basic
features:

•  Different indexing schemes. The system allows different
indexing schemes. Initially, SC, CH-Trees and Nested
Index are considered in the first prototype that is being
developed. However, the indexing mechanism allows for
the easy addition of new schemes.

•  Selection of the indexing mechanism.  The system allows
the selection of the indexing mechanism deemed as the
most appropriate depending on the type of query made to
the class (or class hierarchy) in question.

•  Data type independence. It implies that the indexing can
be performed over any data type (not simple types only).
In order to accomplish this, the mechanism allows to use
user-defined comparison operators.

��� 
���������������������	
��������
�
�������������

Reflection is the capability of a computational system to
“reason about and act upon itself” [28] and adjust itself to
changing conditions. The computational domain of a reflective
system is the structure and the computations of the system
itself. Two kinds of reflection can be observed: structural and
computational reflection [18].

•  Structural Reflection: is the most obvious, and still the
most developed form of reflection. It concerns the
infinitary status of some data structures defined by
reflexive domains [17]. The Java Reflection API [33] is an
example of Structural Reflection.

•  Computational or Behavioral Reflection: Is the ability for
a process to describe, analyse and modify itself while
running.

The Integral Object-Oriented System warrants portability by
using the binary code of an abstract machine [3]. To build an
IOOS on that machine, the design of the machine is very
important. The first prototype of this OO abstract machine had
inheritance, polymorphism, exception handling and
multithreading [15]. Later on, properties were added, such as a
distribution [4] and protection [16].

One option to augment the functionality of the machine is to
add new instructions to the instruction set. A correspondent
interpretation of these instructions has to be defined, to

implement the new desired functionality. This implies a
modification of the machine (interpreter).

A more flexible alternative uses the reflection concept,
introducing structural reflection into the machine. The object is
defined as the computation unit, and a set of primitives
(basically method invocations) are defined upon objects.
Objects have structural reflection, so its structure is always
known. An object’s properties can be freely modified, except
properties defined as primitive.

This design allows to dynamically introduce any property
that can be expressed in terms of primitives. Instead of
modifying the machine (interpreter), additional functionality
will be coded into binary code of the machine, implemented
upon its structural reflection. This kind of design for abstract
machines is also adopted by Smalltalk-80 [26], and especially
by ObjVLisp [13].

%����	�	������������	���

However, most of the power of the system is due to
computational reflection. Smith [31] proposes an interpreter
tower to obtain a system with this property. We will define just
two levels on this tower:

• � The execution of an interpreter for a language �,
expressed by binary code of the virtual machine ��

• � The execution of a user program expressed in the
language � by the interpreter.

To make the system expressed in the language �
computationally reflective, two things are needed:

1. A “jump” 1 from the computation of � to the computation
of � in the two-level tower must be possible.

2. Computation of � has to be structurally reflective in order
to modify the computation state of �.

6WUXFWXUDO�5HIOHFWLYH
9LUWXDO0DFKLQH

/DQJXDJH %

/ ,QWHUSUHWHU

% 2EMHFWV

/DQJXDJH /

8VHU�3URJUDP

/DQJXDJH %

5HLILFDWLRQ

....

....

0RGLILFDWLRQ

ZLWK�6WUXFWXUDO

5HIOHFWLRQ

&RPSXWDWLRQDO

5HIOHFWLRQ

Figure 4 Computational reflection on an abstract machine with
structural reflection

There are some techniques to build reflective systems, such
as MOPs [23]. A MOP (Meta Object Protocol) is the interface
exposed by some auxiliary objects (metaobjects) that offers the
option to change existing objects. This interface is defined at

                                                          
1 This kind of  “jump” is called reification [Maes87].



compile-time, losing some flexibility for the sake of efficiency.
Others like MetaXava are more flexible, instantiating this
protocol at runtime, but less efficient. A higher degree of
flexibility2 is achieved by the before mentioned “jump”
between different computation levels.

The rest of the paper will just use “reflection” for
“computational reflection”.

��� ��������	���
�������������������

���������

As mentioned in a previous section, the persistence system
of the integral object-oriented system relies on a database
engine. Only the interface is specified for better flexibility,
leaving the actual implementation unspecified, as in other
architectures such as CORBA [14]. This design opens the door
for ����� ���	������������ [27]. For example, many different
implementations could be selected depending on a set of
parameters, as in the case of the indexing mechanisms.

Portability is another feature of this kind of architecture. As
in the Java platform [25], the binary code of the abstract
machine is portable to different hardware platforms. With
regard to portability of the application code, access to objects
not directly part of the application has to be studied. OS objects
and specially database engine objects are in this group. When
migrating the application to a different hardware platform and
version of the abstract machine, the database engine could have
a different implementation, taking advantage of special features
of the hardware system. In this former case, portability is also
assured by the common specification of the interface of the
engine.

The implementation of the engine will use the structural
reflection offered by the machine. This eases the
implementation of the engine, as all objects’ properties are
accessible at runtime. Creation, access, modification and
deletion of objects and its properties are services provided by
the machine itself by means of reflection.

Once the engine’s interface is specified and implemented,
applications can use it as an actual persistence system.

�������	�����&������$�����	�������	����

Experienced users which code applications willing to use
the persistence property of the integral system can do so by
accessing directly the services of the database engine through
its interface. A reference to the engine has to be acquired
before the application can use it, as the engine will be an object
of the integral system [2].

In this ���	�
�����������
� the programmer decides when a
specific service of the engine is to be used. This is usually more
efficient than implicit persistence (next section), but the
programmer is concerned with the burden of managing in a
correct way all the persistent objects of the application.

As the engine is an integral part of the (operating) system,
and being accessible from any part of the system3, access to

                                                          
2 Flexibility usually hurts efficiency. In the first
prototype of the system we will concentrate on
flexibility, leaving optimizations for future versions.
3 As a note, the abstract machine and the Integral System
use distributed references. So, remote objects can be

databases is from the programming language itself, as in the
case of PSE Pro, Jeevan, etc.

�������	�����&������������	�������	����

With ���	�
��� ��������
�, applications do not have to take
special actions to make objects persist. The system makes
objects persistent transparently, without having to include
additional “intruder” code besides the proper application logic.
That is, there is no need to explicitly specify calls to the
database engine, as in the case of explicit persistence [30]. The
programmer does not have to take the responsibility of linking
the application with the persistence system; the system will
transparently do so. With this kind of persistence, an
application could be created, debugged and tested, and later, at
execution time, certain objects could be made persistent
dynamically, even with different levels of persistence (with
encryption, replication, logging of updates, different kinds of
stable storage, etc.)

The language for applications (section 3) is interpreted by
an interpreter program developed on the reflective abstract
machine, being then a computationally reflective language. The
middleware that accomplishes this transparent persistence for
any object will be built taking advantage of this reflective
property to implement different levels of persistence.

This middleware software will dynamically make
computational modifications to the objects implementing an
application, so that these objects will now automatically make
the appropriate calls to the database engine (figure 5). The
programmer will just have to select the desired persistence
level for her applications objects (or use default levels selected
by a system policy).

...

22�'DWD%DVH
(QJLQH

Indexing Transactions

3HUVLVWHQFH�/HYHO
0LGGOH:DUH

...

...

8VHU�$SSOLFDWLRQ

Computational
Reflection

Updating
Objects

Different Levels

Different Services

Figure 5 Overall structure of an implicit persistence reflective system

Updating of objects could be done using different
persistence levels at various times, for example:

• � Creation and deletion of objects

• � Invocation of a given set of methods

• � Update of the state of an object

• � At regular intervals of time

                                                                                            
accessed just like local ones, and in particular remote
persistence systems can be accessed.



If there is a need to dynamically change the behaviour of
persistence for the objects of a running application, for
example, updating changes upon any changes to the state of an
object, the system could proceed as follows. The message
passing mechanism of user objects will be modified, making it
now call the database engine to make the object persist when
the invocation of a method results in changes to the state of the
object. There are no changes to user code. User code is also not
conscious that its functionality has been changed, this is
completely transparent to it.

Obviously, the combination of the persistence level with
activations of persistent updates will be less efficient when the
number of updates increases. However, this transparent
middleware takes work and responsibility out from the
programmer, making applications easier to debug as well.

��� �������	������������
��������
�

The most important feature of this persistence subsystem is
the higher degree of flexibility allowed by reflection. Some
advantages derived from this property are mentioned below.

&��������������	"��������	��������	��

The database engine is an integral part of the system. The
engine services can be used either directly or transparently
from any other part of the system: from the OS shell to user
applications.

These services are also homogeneously used throughout the
system. There is no need to make distinctions between data
files, databases, executable files, etc. Persistent objects are the
only abstraction of the system.

��$�
������

For applications using implicit persistence there are two
different variables to take into account at runtime: the
persistence level desired for objects and the different existing
mechanisms or implementations for the services of the engine.
A flexible and dynamic selection of this parameters is possible
with this computational reflective system, so the balance
between persistence functionality and updating frequency and
efficiency can be tuned as needed, adjusting them along time.

For example, an application could use different indexing
mechanisms for queries depending on the system load; even
persistence could be disabled when faster execution is required,
being re-enabled later.

Flexibility needs control: arbitrary changes to a running
system by any user must not be allowed. The existence of a
protection mechanism that can be used homogeneously to
control message passing for the whole system [16] could be
used in particular to control which reflective calls are allowed.

������	���	�����

To find the optimum performance level of a computer
system with limited resources is a complex task. This is
applicable to the field of databases, trying to access higher data
volume in the shortest time possible.

One particular case is related to search algorithms in
databases that use different data structures. Some strategies

perform better in some contexts but are less efficient in others.
For example, nested index has the best retrieval performance,
however multiindex has the best update performance [6].

A study of the impact of the variables that affect the
performance of the engine has to be carried in order to select a
given strategy for a context. The flexibility of the system
facilitates these studies. The most important variables are:

• � Classification of an application’s objects.

• � Existing persistence levels

• � Different implementations for the engine’s services.

Reflectivity makes very simple for an application to modify
these variables and generate statistics in order to make a
compromise. The system is a very suitable platform for the
benchmarking of different indexing mechanisms, for example.
Guidelines for the dynamic selection of indexing mechanisms
depending on specific contexts will be produced after analyzing
this data.

'��"��������������������

Applications programming is simpler now with persistence
implemented reflectively, as programmers do not have to deal
with persistence4 (being it implicit). At runtime, the user will
just need (if desired) to identify which objects should persist
and the persistence level desired. Moreover this decisions can
be changed later. The abstraction level is consequently raised.

Another advantage of this raise of abstraction level achieved
by using an integral database engine with a related reflective
middleware is a big improvement when debugging, porting and
maintaining applications.

��� 
���������
�

There is some related work in the field of reflective
programming languages. Most of these languages are based in
the Meta Object Protocol, being 3-KRS [28] a pioneer. Some
current examples are OpenC++ [11] and MetaXava [24].

These languages give �� ���� reflective executions by
generating compile-time additional code or by extending the
instruction set of a virtual machine. But a running application
can not be modified unless source code is recompiled. These
MOPs generate more efficient code but losing the flexibility of
modifying running applications present in our system.

There are also reflective object-oriented operating systems
such as Apertos [34]. Every object is associated with an
execution environment called metaspace and composed of
metaobjects. Communications with the metaspace is possible
through a set of metaobjects with these specific functions.

There are many  OODMBSs, in the form of independent
servers (O2, ObjectStore, etc.) or in the form of complements
for programming languages (PSE, PSE Pro, etc.). However,
these systems usually work like black boxes with poor
flexibility. There are no provisions for the dynamic addition of
new indexing mechanisms or for applications to select a given
indexing mechanism, etc. On the other hand, these systems are

                                                          
4 Although not treated here, similar considerations can be
made about distribution and protection in the integral
system.



conceived as independent elements, not as an integral part of a
global system like the one proposed in this paper.

OODMBSs and persistent systems in general have three
different possibilities to determine which objects are to persist:
��� ���� (an object may be made persistent when it is created,
based on its type, persistent types versus transient types, as in
Objectivity/DB), ��� ���	�
��� 
�		 (the user may explicitly
specify persistence of an object, as in ObjectStore), and ��
�����
� (determine persistence of objects by reachability
from certain globally known persistent root objects, as in
GemStone). Nevertheless, a less explored alternative is the
utilization of implicit persistence by means of a reflective
mechanism in the sense in which it is proposed in this paper.
That is, systems that allow the dynamic change at runtime of
the level of persistence of an object, which the consequent
increase in simplicity for the programmer.

To explore the concept of implicit persistence, a first
prototype used a design in which persistence was implemented
by adding functionality to the base code of the abstract machine
[30]. Although applications programming in fact took
advantage of this transparent persistence, this designed lacked
flexibility in the way described before. Implementing implicit
persistence with the reflective design proposed in this paper
retains the benefits of implicit persistence while giving more
flexibility.

��� �����������

Currently, programming an object-oriented
application using OODBMSs implies the knowledgements of
different APIs and the inclusion of additional code. An
alternative approach uses the concept of implicit persistence, in
which the user does not need to take special action to make
objects persistent, no "intruder" code is needed, and so
complexity, legibility and portability problems are not a
concern.

An integral object-oriented system based on an abstract
machine that provides basic support for objects in the system is
used to implement implicit persistence. The seamless
integration of a flexible database engine in this system taking
the part of conventional file systems is a first step towards this,
with additional benefits.

The use of an abstract machine with structural reflection
upon which languages with computational reflection are built is
the fundamental piece to achieve flexibility in the database
engine and the persistence mechanism.

The flexibility in the database engine and the specification
of its interface builds on the object-orientation and reflection
capabilities of the machine. Experienced users can now use
explicit persistence by calling directly services of the engine.

Implicit persistence is achieved by a reflective middleware
that makes runtime computational changes to the application
objects, doing (transparent) calls to the database engine to
make objects persist. This accounts for flexibility, as no
additional application code is needed, changes can be
dynamically made while the application is running and
different levels of persistence can be selected for objects.

The system then has a number of benefits related to
persistence such as a uniform use of the persistence system
throughout the system. Flexible use of persistence by dynamic
selection of parameters related to persistence is another benefit.

This also makes the system a very good platform for
benchmarking and/or parameter tuning.

The overall result is a very high-level object-oriented
programming, very portable and with runtime flexibility.

 �� 
���
�����

[1] Steven T. Abell. �������������������. Java White Paper.
http://www.odi.com, March 1999.

[2] Darío Álvarez Gutiérrez. ��� ����
� ������!� �����
�
��
�������������������������������
� ������!���������
������� 11th European Conference on Object-Oriented
Programming (ECOOP’97). Jyväskylä (Finland). June
1997.

[3] D. Álvarez, "���	������������
��������#���
� #�����!
#�������� ������� ������ ��� �����
�� $�
����� ����
%��	�
����� �
����
���, Ph. D. Thesis, University of
Oviedo, Spain, March 1998.

[4] F. Álvarez, L. Tajes, M. Díaz, D. Álvarez and J.M.
Cueva�����&� '���#���
�� (����������� ���������� ��� ���
�#)�#���
� #�����!�#�������� ������. Proceedings of
the PDPTA'98. International Conference on Parallel and
Distributed Processing Techniques and Applications, pp.
255-258. CSREA Press. 1998.

[5] M. Atkinson, L. Daynès, M. Jordan, T. Printezis, S.
Spence. ��� #�������		�� ���������� ������ � �*+$#(
%�
�!,�-�	�./�01)��(�
����,2334

[6] E. Bertino  and W. Kim. *�!������'�
���5�������6�����
���0����!�#���
��. IEEE Transactions on Knowledge and
Data Engineering. Vol.1 nº2, 1989.

[7] E. Bertino and P. Foscoli. *�!��� #����7������� ��
#���
� #�����!� (�������� �������. IEEE Transactions
on Knowledge and Data Engineering. Vol.7, 1995.

[8] R. Cattell, T. Atwood, J. Duhl et. al. '���#���
��(�������
����!�!&#($+ 38. Morgan Kaufmann, 1994.

[9] R. Cattell �� #���
�� (���� $����������� #���
�� #�����!
��!� �����!�!� %�	������	� (�������� ������� ( Revised
Edition ). Addison Wesley, 1994.

[10] R. Cattell, D. Barry, D. Bartels�� '��� #���
�� (�������
����!�!&�#($+�.�9� Morgan Kaufmann, 1997.

[11] Shigeru Chiba. �� $�������
�� ����
�	� ��� "::.
Proceedings of the Conference on Object-Oriented
Programmings, Systems, Languages, and Applications,
OOPSLA’95. pp. 285-299.

[12] C. Chin, B. Chin, H. Lu.�; ����&���(�����
�����
������
���
���*�!������##(�� ACM SIGMOD, 1992.

[13] Pierre Cointe. '��� #��-	���� <���	&� �� %��	�
����� =���
�
����
�������!���������������#���
� #�����!��������
Meta-Level Architectures and Reflection. P. Maes, D.
Nardi (Editors). North-Holland, 1998.

[14] OMG. "#%��&��
����
������!����
���
�������1997.

[15] J.M. Cueva.� '��� *�����	� #���
�� #�����!� ������
#���!�8. II Jornadas sobre Tecnologías Orientadas a
Objetos. Oviedo, 1996.

[16] M.A. Díaz, D. Álvarez, A. García-Mendoza , F. Álvarez,
L. Tajes and J.M. Cueva�� $������ "�����	������ ����� ���



#���
�� $�!�	� ��� ��� #���
� #�����!� �����
�� $�
�����
Proceedings of the ECOOP’98 Workshop on Distributed
Object Security and the 4th Workshop on Mobile Object
Systems, pp. 9-13. Inria Rhône-Alpes, Francia, Julio de
1998.

[17] Jacques Ferber. "�
�����	� ��	�
����� ��!� �
��
	��������. Meta-Level Architectures and Reflection. P.
Maes, D. Nardi (Editors). North-Holland, 1988.

[18] Jacques Ferber. "�����������	�%��	�
��������
	��������!
#���
� #�����!� =��������� Proceedings of the
Conference on Object-Oriented Programmings, Systems,
Languages, and Applications, OOPSLA’89, New
Orleans, Oct. 1989, pp. 317-326.

[19] ����� �	��!&� *���������� ����� #���
��� ����� ��������
(���. White paper.  http://java.sun.com, March 1999.

[20] ����������>��+��!�.  http://www.w3apps.com/, March
1999.

[21] A. Kemper, C. Kilger  and G. Moerkotte. ?��
����
$�����	�7������ ��� #���
�� �����&� (�����,� %��	�7�����,
��!� ���	������� IEEE Transactions on Knowledge and
Data Engineering, 1994.

[22] W. Kim, K.C. Kim, A. Dale�� *�!������ '�
���5���� ��
#���
� #�����!� (��������� En W. Kim y F.H.
Lochovsky (ed) : Object-Oriented Concepts, Databases,
and Applications. Addison-Wesley, 1989.

[23] Gregor Kizcales, J. des Rivieres, D.G. Bobrow.'�����
���$��� #���
������
�	� MIT Press 91.

[24] Jügen Kleinöder, Michael Golm. $�������&��������
����
%�� '���� $���� �
����
���� ��� ���� . TR-14-96-03.
Computer Science Department, Friedrich-Alexander-
University Erlangen-Nürnberg, Germany. June 1996.

[25] Douglas Kramer. '������� ��	���������@���������.
Sun JavaSoft. May 1996.

[26] Glenn Krasner. ���		��	A B9,� ����� ��� ������,� ��!�� ��
�!����� Xerox Palo Alto Research Center. Addison
Wesley 1984.

[27] Chris Maeda, Arthur Lee, Gail Murphy, Gregor
Kiczales.�#����*��	�������������!�(�����. Proceedings
Symposium on Software Reuse. May 1997.

[28] Pattie Maes. "�����������	� %��	�
����. Technical
Report 87_2, Artificial Intelligence Laboratory, Vrieje
Universiteit Brussel, 1987.

[29] A.B. Martínez, D. Álvarez, J.M. Cueva, F. Ortín , J.A.
Pérez. *�
��������� ���#���
� Oriented� (�$�� ����� ��
*�����	�#���
� #�����!���������World Multiconference
on Systemics, Cybernetics and Informatics and
International Conference on Information Systems,
Florida, 1998.

[30] F. Ortín, D. Álvarez, R. Izquierdo, A.B. Martínez, J.M.
Cueva.�'���#���!�8���������
��������. III Jornadas de
Tecnologías de Objetos. Sevilla, 1997.(in spanish).

[31] B.C. Smith, %��	�
����� ��!� �������
�� ��� �� ��
�!��	
=�������, MIT-LCS-TR-272, MIT, Cambridge, 1982.

[32] ���������� ���>�� +��!�.
http://www.bluestream.com/ss/default.htm, March 1999.

[33] �����"���%��	�
��������*���!����
���
������� JavaSoft.
January 1997.

[34] Y. Yokote. <���	� ���
������ ��� #���
� #�����!
#�������� �������&� '��� ������� �����
�. Workshop
on Reflection and Meta-level Architectures at
OOPSLA 93.


