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6 Abstract

7 In today�s fast changing environments, adaptability has become an important feature in modern computing systems, pro-
8 gramming languages and software engineering methods. Different approaches and techniques are used to achieve the development

9 of adaptable systems. Following the principle of separation of concerns, aspect-oriented programming (AOP) distinguishes ap-

10 plication functional code from specific concerns that cut across the system, creating the final application by weaving the program�s
11 main code and its specific aspects. In many cases, dynamic application adaptation is needed, but few existing AOP tools offer it in a

12 limited way. Moreover, these tools use a fixed programming language: aspects cannot be implemented regardless of its programming

13 language.

14 We identify reflection as a mechanism capable of overcoming the deficiencies previously mentioned. We have developed a non-

15 restrictive reflective technique that achieves a real computational-environment jump, making every application and language feature

16 adaptable at runtime––without any previously defined restriction. Moreover, our reflective platform is independent of the language

17 selected by the programmer. Using the reflective capabilities of the platform presented, an AOP framework that achieves dynamic

18 aspect weaving in a language-independent way has been constructed, overcoming the common limitations of existing AOP tools.

19 � 2002 Published by Elsevier Science Inc.
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21 1. Introduction

22 In many cases, significant concerns in software ap-

23 plications are not easily expressed in a modular way.

24 Examples of such concerns are transactions, security,

25 logging or persistence. The code that addresses these

26 concerns is often spread out over many parts of the

27 application. Software engineers have used the principle
28 of separation of concerns (Parnas, 1972; H€uursch and
29 Lopes, 1995) to manage the complexity of software de-

30 velopment; it separates main application algorithms

31 from special purpose concerns. Final applications are

32 built by means of its main functional code plus their

33 specific problem-domain concerns. The main benefits of

34 this principle are:

351. Higher level of abstraction, since the programmer can

36reason about individual concerns in isolation.

372. Easier to understand the application functionality.

38The application�s source code is not cluttered with
39the code of other concerns.

403. Concern reuse. Separation of concerns attains decou-

41pling of different modules, achieving reusability of

42single concerns.
434. Increase of application development productivity. In

44addition to previously mentioned advantages, the use

45of testing and debugging concerns (such as tracing,

46pre and post condition contract enforcement or pro-

47filing) might facilitate the application construction––

48without needing to modify the functional source

49code.

50This principle has been performed following several

51approaches. Aspect-oriented programming (AOP) (Ki-

52czales et al., 1997), multi-dimensional separation of

53concerns (Tarr et al., 1999) or reflective meta-object
54protocol (MOP) programming languages (Kiczales et

55al., 1992), are well-known examples.
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56 Both AOP and multi-dimensional separation of

57 concerns achieve the construction of concern-adaptable

58 programs. Most existing tools lack adaptability at run-

59 time: once the final application has been generated

60 (woven), it will not be able to adapt its concerns (aspects)

61 at runtime. There are certain cases in which the adap-
62 tation of application concerns should be done dynami-

63 cally, in response to changes in the runtime

64 environment––e.g., distribution concerns based on load

65 balancing (Matthijs et al., 1997).

66 To overcome the static-weaving tools limitations,

67 different dynamic-weaving AOP approaches––like AOP/

68 ST (B€oollert, 1999), PROSE (Popovici et al., 2001) or

69 Dynamic Aspect-Oriented Platform (Pinto et al.,
70 2001)––have appeared. However, as we will explain in

71 Section 2, they limit the set of join points they offer,

72 restricting the way aspects can be adapted at runtime.

73 Another drawback of existing tools is that they use fixed

74 programming languages: aspects and concerns are not

75 reusable regardless of its programming language.

76 Reflection is a programming language technique that

77 achieves dynamic application adaptability. It can be
78 used to reach aspect adaptation at runtime. Most run-

79 time reflective systems are based on the ability to modify

80 the programming language semantics while the appli-

81 cation is running (e.g., the message passing mechanism).

82 However, this adaptability is commonly achieved by

83 implementing a protocol (MOP) as part of the language

84 interpreter that specifies––and therefore, restricts––the

85 way a program may be modified at runtime. As we will
86 explain in Section 3.1, other limitations of common

87 MOP-based systems are their language-dependence and

88 their restrictions expressing system�s features modifica-
89 tion.

90 We have developed a non-restrictive reflective plat-

91 form called nitrO (Ortin and Cueva, 2002), in which it is

92 possible to change any programming language and ap-

93 plication feature at runtime, without any kind of re-
94 striction imposed by an interpreter protocol. Our

95 platform achieves language neutrality: any program-

96 ming language can be used, and every application is

97 capable of adapting another one�s characteristic, no
98 matter whether they use the same programming lan-

99 guage or not.

100By using nitrO as the back-end of our AOP system, it

101is possible to develop dynamic modification of applica-

102tion aspects. Applications may dynamically adapt their

103concerns to unpredictable design-time requirements,

104changing them at runtime––without any previously de-

105fined restriction.
106The rest of this paper is structured as follows. In

107Section 2 we present AOP and the main lacks of existing

108tools. Section 3 briefly describes two reflection classifi-

109cations as well as MOP advantages and drawbacks; we

110also present the reflective features of the Python pro-

111gramming language. Section 4 introduces our system

112architecture; its design is presented in Section 5. How

113application and programming languages are represented
114is described in Section 6, and different dynamic aspect-

115adaptation examples are shown in the following section.

116Finally, we analyze runtime performance (Section 8) and

117Section 9 presents the ending conclusions.

1182. Aspect-oriented programming

119AOP technique (Kiczales et al., 1997) provides ex-

120plicit language support for modularizing application

121concerns that crosscut the application functional code.

122Aspects express functionality that cuts across the system

123in a modular way, thereby allowing the developer to

124design a system out of orthogonal concerns and pro-

125viding a single focus point for modifications. By sepa-

126rating the application functional code from its
127crosscutting aspects, the application source code would

128not be tangled, being easy to debug, maintain and

129modify (Parnas, 1972).

130Application persistence, tracing or synchronization

131policy, are examples of aspects that can be used in dif-

132ferent applications, whatever its functionality would be.

133Aspect-oriented tools create programs combining the

134application functional code and its specific aspects. The
135process of integrating the aspects into the main appli-

136cation code is called weaving and a tool called aspect

137weaver performs it.

Fig. 1. Separating functional code from specific aspects.
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138 2.1. Static weaving

139 Most current AOP implementations are largely based

140 on static weaving: compile-time modification of appli-

141 cation source code, inserting calls to specific aspect

142 routines. The places where these calls are inserted are
143 called join points.

144 AspectJ (Kiczales et al., 2001) is an example of a

145 static-weaving aspect-oriented tool: a general-purpose

146 aspect-oriented extension to Java that supports AOP.

147 The way AspectJ supports aspect-oriented separation of

148 concerns is by following the next steps (as shown in Fig.

149 1):

150 1. Identifying join points in the application�s functional
151 code by means of pointcuts designators. We must

152 identify certain well-defined points in the execution
153 of a program where calls to aspect code would be in-

154 serted. An example of a common join point is a meth-

155 od call.

156 2. Implementing advice to be run at join points. This

157 code will be executed when a join point is reached, ei-

158 ther before or after the computation proceeds.

159 3. Declaring aspects. An aspect is a modular unit of

160 crosscutting implementation that is provided in terms
161 of pointcuts and advice, specifying what (advice) and

162 when (pointcut) its code is going to be executed.

163 4. Generating the final application. The AspectJ com-

164 piler ‘‘ajc’’ (O�Brien, 2001) takes both the applica-
165 tion functional code and its specific aspects,

166 producing the final Java2 ‘‘.class’’ files.

167 2.2. Dynamic weaving

168 Using a static weaver, the final program is generated

169 by weaving the application functional code and its se-

170 lected aspects. If we want to enhance the application

171 with a new aspect, the system has to be re-compiled and

172 re-started.

173 Although not every application aspect needs to be

174 adapted at runtime, there are specific aspects that will
175 benefit from a dynamic-weaving system. There could be

176 applications that need to dynamically adapt its specific

177 concerns in response to changes in the runtime envi-

178 ronment (Popovici et al., 2001). As an example, related

179 techniques has been used in handling Quality of Service

180 (QoS) requirements in CORBA distributed systems

181 (Zinky et al., 1997).

182 In order to overcome the static-weaving weaknesses,
183 different dynamic-weaving approaches have emerged:

184 e.g. AOP/ST (B€oollert, 1999), PROSE (Popovici et al.,
185 2001) or Dynamic Aspect-Oriented Platform (Pinto et

186 al., 2001). These systems offer the programmer the

187 ability to dynamically modify the aspect code assigned

188 to application join-points––similar to runtime reflective

189 systems (Maes, 1987).

190The limited set of language join-points restricts the

191amount of application features an aspect can adapt. For

192instance, PROSE cannot implement a post-condition-

193like aspect, since its join-point interface does not allow

194accessing the value returned by a method upon exit

195(Popovici et al., 2001).
196We think that an interesting dynamic-weaving issue is

197giving a system the ability to adapt to runtime-emerging

198aspects unpredicted at design time––e.g., a logging as-

199pect not considered previously to the application exe-

200cution. A system that offers a limited set of join points

201restricts this facility.

2022.3. Language dependency

203Both static and dynamic weaving AOP tools do not

204offer the implementation of crosscutting concerns, re-

205gardless of the language that the programmer might use.

206They use fixed-language techniques to achieve separa-

207tion of concerns.

208We have identified computational reflection (Maes,

2091987) as the best technique to overcome the previously
210mentioned limitations. In this paper, we present our

211reflective and language-neutral programming platform

212employed to achieve dynamic and non-restrictive aspect

213adaptation, in a language-independent way.

2143. Categorizing reflection

215We identify two main criteria to categorize reflective

216systems. These criteria are when reflection takes place

217and what can be reflected. If we take what can be re-

218flected as a criterion, we can distinguish:

219• Introspection: The system�s structure can be accessed
220but not modified. If we take Java as an example, with

221its ‘‘java.lang.reflect’’ package, we can get in-

222formation about classes, objects, methods and fields

223at runtime.

224• Structural reflection: The system�s structure can be
225modified. An example of this kind of reflection is

226the addition of object�s fields––attributes.
227• Computational (behavioral) reflection: The system se-

228mantics (behavior) can be modified. For instance,

229metaXa––formerly called MetaJava (Klein€ooder and
230Golm, 1996)––offers the programmer the ability to

231dynamically modify the method dispatching mecha-

232nism.

233Taking when reflection takes place as the classifica-

234tion criterion, we have:

235• Compile-time reflection: The system customization

236takes place at compile-time––e.g., OpenJava (Chiba

237and Michiaki, 1998). The two main benefits of this
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238 kind of systems are runtime performance and the

239 ability to adapt its own language. Many static-weav-

240 ing aspect-oriented tools use this technique.

241 • Runtime reflection: The system may be adapted at

242 runtime, once it has been created and run––e.g., me-

243 taXa. These systems have greater adaptability by
244 paying performance penalties.

245 Our system, nitrO (Ortin and Cueva, 2001), achieves
246 computational reflection at runtime. Moreover, our re-

247 flection technique implementation is more flexible than

248 common runtime reflective systems––as we will explain

249 in the next section––and it is not language-dependent.

250 3.1. Meta-object protocols restrictions

251 Most runtime reflective systems are based on MOPs
252 (MOPs). A MOP specifies the implementation of a re-

253 flective object-model (Kiczales et al., 1992). An appli-

254 cation is developed by means of a programming

255 language (base level). The application�s meta-level is the
256 implementation of the computational object model

257 supported by the programming language at the inter-

258 preter computational environment. Therefore, a MOP

259 specifies the way a base-level application may access its
260 meta-level in order to adapt its behavior at runtime.

261 As shown in Fig. 2, the implementation of different

262 meta-objects can be used to override the system se-

263 mantics. For example, in MetaXa (Klein€ooder and Golm,
264 1996), we can implement the class ‘‘Trace’’ inherited

265 from the class ‘‘MetaObject’’ (offered by the language as

266 part of the MOP) and override the ‘‘eventMethodEnter’’

267 method. Its instances are meta-objects that can be at-
268 tached to user objects by means of its inherited ‘‘at-

269 tachObject’’ message. Every time a message is passed to

270 these user objects, the ‘‘eventMethodEnter’’ method of

271 its linked meta-objects will be called––showing a trace

272message and, therefore, customizing its message-passing

273semantics.

274The MOP reflective technique has different draw-

275backs:

2761. The way a MOP is defined restricts the amount of

277features that can be customized (Douence and

278S€uudholt, 1999). If we do not consider a system feature
279to be adaptable by the MOP, this application�s attrib-
280ute will not be able to be customized once the appli-

281cation is running. In our example, if we would like to

282adapt the way objects are created, we must stop the

283program execution and modify the MOP implemen-

284tation.

2852. Changing the MOP would involve different inter-

286preter and language versions and, therefore, previous

287existing code could result deprecated.
2883. The way a semantic feature may be customized has

289expressiveness restrictions. Objects behavior may be

290overridden by attaching meta-objects to them. These

291meta-objects express how they modify the objects� be-
292havior by just overriding its super-class� methods––it
293follows the Template Method design pattern (Gam-

294ma et al., 1995). The use of a whole meta-language

295would be a richer mechanism to express the way an
296application may be adapted.

2974. Finally, MOP-based systems are language-dependent.

298They do not offer runtime adaptability in a language-

299independent way.

300Some advanced dynamic-weaving AOP tools, like

301PROSE (Popovici et al., 2001), use MOP-based reflec-

302tive interpreters on its back-ends. Therefore, this kind of

303dynamic separation of crosscutting concerns will not be

304capable of overcoming these four disadvantages.

305Our nitrO runtime reflection mechanism is based on a

306meta-language specification (Ortin and Cueva, 2002).
307The way the base level accesses the meta-level (reifica-

308tion) is specified by another language (meta-language)––

309not by using a MOP. The meta-language is capable of

310adapting the structure and behavior of the base level at

311runtime, without any restriction and independently of

312the language being used. Its design will be specified in

313Section 4.

3143.2. Python’s reflective capabilities

315We have selected the Python programming language

316(Rossum, 2001) to develop our system because of its

317reflective capabilities (Andersen, 1998):

318• Introspection: At runtime, any object�s attribute, class
319or inheritance graph can be inspected. It can also be

320inspected the dynamic symbol table of any applica-

321tion: its existing modules, classes, objects and vari-

322ables at runtime.Fig. 2. MOP-based program adaptation.
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323 • Structural reflection: It is possible to modify the set of

324 methods a class offers and the set of fields an object

325 has. We can also modify the class an object is in-

326 stance of, and the set of super-classes a class inherits

327 from.
328 • Dynamic evaluation of code represented as strings. Py-

329 thon offers the ‘‘exec’’ function that evaluates a string

330 as a set of statements. This feature can be used to

331 evaluate code generated at runtime.

332 4. System architecture

333 The theoretical definition of reflection uses the notion

334 of a reflective tower (Smith, 1984): we have a tower in

335 which an interpreter, that defines its operational se-

336 mantics, is running the user program. A reflective

337 computation is a computation about the computation,

338 i.e. a computation that accesses the interpreter. If an

339 application would be able to access its interpreter at

340 runtime, it would be capable of inspecting runtime sys-
341 tem objects (introspection), modifying its structure

342 (structural reflection) and customizing its language se-

343 mantics (computational reflection).

344 Our reflective platform follows this scheme, allowing

345 applications to access the interpreter computational

346 environment. Opposite to MOP-based systems, a real

347 computational-environment jump gives the programmer

348 the ability to dynamically get into and modify any ap-
349 plication and language feature. However, this mecha-

350 nism is difficult to implement. Interpreters commonly

351 have complex structures representing different func-

352 tionality like parsing mechanism, semantics interpreta-

353 tion, or runtime user-application representation. For

354 instance, modifying by error the parsing mechanism

355 would involve unexpected results.

356 What we have developed is a generic interpreter that
357 separates the structures accessible by the base level from

358 the fixed modules that should never be modified. This

359 generic interpreter is language-neutral: its inputs are

360 both the user application and the language specification.

361It is capable of interpreting any programming language

362by reading its specification, as shown in Fig. 3.

363At runtime, any application may access its language

364specification (or another one�s language) by using the
365whole expressiveness of the Python programming lan-
366guage. There are no pre-established limitations imposed

367by either an interpreter protocol or a set of join-points:

368any language feature can be adapted. Changes per-

369formed in a programming language are automatically

370reflected on the application execution, because the ge-

371neric interpreter relies on the language specification

372while the application is running.

3735. System design

374In Fig. 4, we show how the generic interpreter, every

375time an application is running, offers two sets of objects

376to the reflective system: the first one is the language

377specification represented as a graph of objects (we will

378explain its structure in the next section); the second
379group of objects is the runtime application�s symbol
380table: variables, objects and classes created by the user.

381Any application may access and modify these object

382structures by using the Python programming language;

383its reflective features will be used to:

3841. If an application symbol table is inspected, introspec-

385tion between different applications (independently of

386the language used) is achieved.

3872. Modifying the symbol table structure, by means of

388Python structural reflective capabilities, implies struc-

389tural reflection of any running application.
3903. If the semantics of a language specification is modi-

391fied, customization of its running application�s behav-
392ior is achieved (computational reflection).

3935.1. Computational jump

394The main question of this design is how the appli-

395cation computational environment may access and

Fig. 3. System architecture.
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396 modify the interpreter computational environment––i.e.,

397 different language specifications and application symbol
398 tables.

399 Every language in our system includes the ‘‘reify’’

400 statement; the generic interpreter automatically recog-

401 nizes it, no matter the language being used. Inside the

402 reify statement, Python code can written. This Python

403 code will not be processed as the rest of the application

404 code: every time the interpreter recognizes a reify

405statement, its Python code will be taken and evaluated

406by invoking the ‘‘exec’’ function. This Python code,
407using Python structural reflection, may access and

408modify application symbol tables and language specifi-

409cations. This scheme is shown in Fig. 5.

410The code written inside a ‘‘reify’’ statement is evalu-

411ated in the interpreter computational environment, not

412in the application computing-environment––the place

413where it was written. So, Python becomes a meta-lan-

Fig. 4. Dynamic language specification and symbol-table access.

Fig. 5. Computational environment jump.
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414 guage to specify, and dynamically modify, any language

415 and application that would be running in the system.

416 There is no need to specify either application join-points

417 or a protocol that would previously restrict what system

418 features could be adapted.

419 Python code inside a ‘‘reify’’ statement might be
420 written improperly, having syntax or semantic errors.

421 The correctness verification of these Python statements

422 is done by the ‘‘exec’’ function raising an exception.

423 Consequently, the programmer may handle this excep-

424 tion knowing whether the reify Python code has been

425 executed correctly or not.

426 6. Language and application description

427 As we have seen in the previous section, applications

428 in our system may dynamically access language specifi-

429 cations and application symbol tables, in order to

430 achieve different levels of reflection. What we present in

431 this point is how languages and applications are repre-

432 sented by means of object structures.
433 Programming languages are specified with meta-lan-

434 guage files. Their lexical and syntactic features are ex-

435 pressed by means of context-free grammar rules; their

436 semantics, expressed in Python code, are placed at the

437 end of each rule. We have already specified the Python

438 programming language and some domain-specific lan-

439 guages; currently, we are writing the Java and Jscript

440 specifications. Correctness verification (e.g., type
441 checking) is expressed using Python code as part of the

442 semantic actions; these semantic-analysis routines make

443 extensive use of application symbol and type tables.

444 The next code shows part of the ‘‘MetaPython’’

445 programming language––a meta-language specification

446 of a subset of the Python programming language:

447 Language¼MetaPython

448 Scanner¼{

449 00Digit Token00
digit! 00000| 00100 | 00200 | 00300 | 00400 | 00500 | 00600 |
00700 | 00800 | 00900;

452 00Number Token00
453 NUMBER!digit moreDigits;

454 00Zero or more digits token00
455 moreDigits!digit moreDigits

456 |;

457 . . .
458 }

459 Parser¼ {

460 00Initial Context-Free Rule00
S!statement moreStatements SEMI-

COLON <#

463 # Application execution initialization

464 global classes, functions, classAnalysed,

465 functionAnalised, functionResult

466classes¼{} # Classes Symbol Table

467functions¼{} # Function Symbol Table

468. . .
469#> ;

470‘‘Zero or more Statements’’

471moreStatements!statement more-

472Statements <#

473nodes[2].execute()

474nodes[3].execute()

475#>

476|;

47700Statement00
478statement!classDefinition <#

479nodes[1].execute()# Inserts the class

480into the ST

481#>

482. . .
483| _REIFY_ <#

484nodes[1].execute()

485#>

486. . .
487;

488. . .
48900Method or function call00
490functionCall!ID OPENBRACE args

491CLOSEBRACE <#

492. . .
493#>

494| ID DOT ID OPENBRACE args

495CLOSEBRACE <#
496. . .
497#>

498;

499. . .
500}

501Lexical rules are specified in the ‘‘Scanner’’ section.

502Syntactic ones are located in the ‘‘Parser’’ scope. At the

503end of each rule, Python code can be placed representing

504language semantics. Ellipsis points in the sample meta-

505language grammar indicate elements deliberately sup-
506pressed––the whole language specification can be

507obtained from http://www.di.uniovi.es/

508reflection/lab/prototypes.html#nrrs.

509The ‘‘_REIFY_’’ reserved word indicates where a

510reify statement may be syntactically located. Every ap-

511plication file must indicate its programming language

512previously to its source code. When the application is

513about to be executed, its respective language specifica-
514tion file is analyzed and translated into an object rep-

515resentation.

516‘‘Non-Terminal’’ objects, symbolizing non-terminal

517symbols of the rule�s left-hand side, represent each lan-
518guage production. These objects are associated to a

519group of ‘‘Right’’ objects, which represent the rule�s
520right-hand sides. A ‘‘Right’’ object has two attributes:
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521 1. Attribute ‘‘nodes’’: Collects ‘‘Terminal’’ and ‘‘Non-

522 Terminal’’ objects representing the production�s
523 right-hand side.

524 2. Attribute ‘‘actions’’: List of ‘‘SemanticAction’’ ob-

525 jects; each of them stores the Python code located

526 at the end of each rule specification. This code will
527 be executed in the application interpretation.

528 Fig. 6 shows a fragment of the object diagram rep-
529 resenting the example shown above.

530 Any application code starts with its unique ID

531 (‘‘Bank App’’ in the next example) followed by its lan-

532 guage name (‘‘MetaPython’’). The language can also be

533 specified inside the application file, using the meta-lan-

534 guage. In that case, the system will be capable of run-

535 ning the application even though it does not hold its

536 language specification. This is a MetaPython sample
537 application:

538 Application¼ 00Bank App00
539 Language¼ 00MetaPython00
540 import string;

541 import random;

542 class Account {

543 def init(self,user,credit){

544 self.user¼user;

545 self.credit¼credit;

546 }

547def withdraw(self,ammount){

548self.credit¼self.credit-ammount;

549return ammount;

550}

551def creditTransfer(self,ammount){

552self.credit¼self.credit+ammount;

553}

554}

555account¼Account();

556account.init(0myself0,2000);
557while 1 {

558if random.random()<0.5{

559account.creditTransfer(100);

560print(0Transfer done!0);
561}

562else{

563account.withdraw(100);

564print(0Withdraw done!0);
565}

566}

567The code above simulates a simple bank application.

568It first defines a class, creates an instance, and sends it

569two messages at random in an infinite loop. The object

570has two fields that store the identity of the account
571owner and her credit.

Fig. 6. Fragment of the language specification object diagram.
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572 Once the application�s language specification has

573 been translated into its respective object structure, a

574 backtracking algorithm parsers the application�s source
575 code creating its abstract syntax tree (AST). Then, the

576 initial non-terminal�s code is executed. The tree-walking
577 process is defined by the way grammar-symbol�s ‘‘exe-
578 cute’’ methods are invoked: the non-terminal ‘‘execute’’

579 method evaluates its associated semantic action. This

580 way, the AST nodes are connected with its language

581 specification structure (Fig. 6); changes on the language

582 specification will automatically be reflected on the ap-

583 plication execution.

584 Interoperability between different applications pro-

585 grammed in different languages is achieved by accessing
586 the ‘‘nitrO’’ global object. Its attribute ‘‘applications’’ is

587 a hash table that collects every existing application in

588 the system. Each application object has two attributes:

589 1. Attribute ‘‘language’’: Its language specification.

590 2. Attribute ‘‘applicationGlobalContext’’: Its dynamic

591 symbol table.

592 7. Dynamic aspect adaptation

593 Accessing the ‘‘nitrO’’ object attributes, any appli-

594 cation can adapt another one�s behavior and structure at
595 runtime, without any predefined restriction and in a

596 language-independent way. Dynamic language seman-

597 tics customization can be used to change application

598 aspects at runtime, not needing to specify its join-points

599 at the time they are being implemented.

600 Introspective and structural reflective features of our
601 platform give the programmer the opportunity to easily

602 access and modify runtime objects in order to develop

603 reusable and generic aspects such as persistence or dis-

604 tribution (Foote, 1992). As a first example, we can use

605 introspection to develop a trace routine that shows any

606 application runtime symbol table, regardless of its pro-

607 gramming language:

608 [1] Application¼ 00Trace Symbol-Table As-

609 pect00
610 [2] Language¼<#
611 [3] Language¼JustReflection

612 [4] Scanner¼{}

613 [5] Parser¼{

614 [6] 00Initial Free-Context Rule00
615 [7] S! REIFY <#

616 [8] nodes[1].execute()

617 [9] #>;}

618 [10] Skip¼{00 n n00; 00 n t00; 00 00; }
619 [11] NotSkip¼{}

620 [12] #>

621 [13] reify<#

622 [14] # weave is the aspect-weaving routine

623[15] def weave(self,appID):

624[16] # Is the appID application running?

625[17] if self.nitrO.apps.has_key(appID):

626[18] theApp¼self.nitrO.apps[appID]

627[19] # Shows the Symbol Table in the as-

628pect window

629[20] self.window.write(theApp.applica-

630self.window.write(theApp.applica-

631w.write(theApp.applicationGlobalCon-

632plicationGlobalContext)

633[21] else:

634[22] self.nitrO.shell.write(00The appli-
635cation named n00 00+appID+00 n 00must be

636started.nn00)
637[23] nitrO.apps[00Trace Symbol-Table As-

638pect00]._class_.weave¼weave

639[24] write(00Routine installed as the

640n00weaven00method of n00TraceSymbol-Table
641Aspectn00application.nn00Þ
642[25] #>

643This application specifies itself its own programming

644language: ‘‘JustReflection’’ (lines 2–12), a unique ‘‘reify’’

645statement (lines 13–25). If we run this application, a

646dynamic aspect that shows any program�s symbol table
647is installed in the system––the message ‘‘Routine installed

648as the ‘‘weave’’ method of ‘‘Trace Symbol-Table Aspect’’

649application’’ is shown (line 24). The reify statement de-

650fines a function (line 15) and afterwards sets it as an

651application method (line 23). This method takes a pro-

652gram ID as a parameter and searches its application

653object in the system (lines 17 and 18). If it is found, the

654application symbol table will be displayed in the aspect
655graphic window (line 20).

656Any running program�s symbol-table could be shown
657using this aspect, regardless of the language it has been

658written in. For instance, we can show the ‘‘Bank App’’

659application symbol table executing the next statement in

660the nitrO shell:

661nitrO.apps[00Trace Symbol-Table Aspect00].
662weave(00Bank App00)

663The previous aspect shows the whole runtime symbol

664table of any application, written in any language. If we

665just want to trace the existing user classes of any ap-

666plication, we should take into account its programming

667language. The localization of user classes within a
668symbol table depends on the way the language has been

669specified.

670In order to suppress any language-specific depen-

671dency in every aspect implementation, a set of facilities

672have been implemented in the ‘‘aspectFacilities’’ mod-

673ule. These routines make the development of crosscut-

674ting concerns easier, offering the aspect programmer

675language-independent facilities. As an example, the
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676 following aspect code employs the language-neutral

677 ‘‘getClassesFromSymbolTable’’ function, which returns

678 the list of existing classes in an application�s symbol-
679 table, whatever its language might be.

680 Application¼ 00Show Classes Aspect00
681 Language¼<#
682 Language¼JustReflection

683 Scanner¼{}

684 Parser¼{

685 00Initial Free-Context Rule00
686 S! REIFY <#

687 nodes[1].execute()

688 #>;}

689 Skip¼{00nn00;00nt00;00 00;}
690 NotSkip¼{}

691 #>
692 reify<#

693 def weave(self,appID):

694 if self.nitrO.apps.has_key(appID):

695 from aspectFacilities import*

696 import aspectFacilities

697 app¼self.nitrO.apps[appID]

698 loadAspects(app,aspectFacilities)

self.window.write(app.language.

getClassesFromSymboltable(app))

701 else:

nitrO.shell.write(00The application

named n00 00þ appþ 00 n 00must be star-

ted.nn00)
705 nitrO.apps[00Show Classes Aspect00]._class

706 _. weave¼weave

707 write (00Routine installed as then00runn
708 00method ofn00Show Classes Aspectn00applica-
709 tion.nn00Þ
710 #>

711 The language neutrality is achieved by following the

712 next steps:

713 1. The ‘‘aspectFacilities’’ module implements facilities

714 by following a naming convention: their names must

715 be composed of the language identifier, an underscore

716 and the routine�s name––e.g. ‘‘MetaPython_getClass-
717 esFromSymbolTable’’ in the example above.

718 2. Every time the ‘‘loadAspects’’ function is called, it

719 analyses every facility developed in the module by

720 means of introspection. This function is called pass-
721 ing an application object as a parameter. In case

722 the application language would be the same as the be-

723 ginning of the routine�s identifier being analyzed, this
724 function will be inserted set as a method of the appli-

725 cation object––using runtime structural reflection.

726 This dynamic load offers the possibility to enhance

727 the number of existing facilities while the system is

728 running.

729The following code shows the ‘‘loadAspects’’ func-

730tion implementation:

731def loadAspects(app,module):

732language¼app.language

733try:

734language.aspectRoutinesLoaded

735return # Already loaded

736except:

737pass

738count ¼ 0

739for i in dir(module):

740if i .find(00_00)!¼-1 and i.count(00_00)
74¼ ¼1:

742l ¼ i:splitð00 00Þ
743if language.name¼ ¼l[0]:# Same

74language

745count¼count+1

746execð00language:00þl½1�þ 00¼module:00þiÞ
747if not(count):

748raise language.name+00must implement

74aspect routines00
750else:

751language.aspectRoutinesLoaded¼1

752The resulting framework follows the ‘‘Template

753Method’’ design pattern (Gamma et al., 1995) in a run-

754time reflective way, offering the programmer language-

755neutrality of every aspect facility (different examples of
756these facilities are ‘‘getClassesFromSymbolTable’’, ‘‘in-

757jectCodeIntoMethodCall’’ and ‘‘deleteCodeFromMeth-

758odCall’’). These facilities offer dynamic aspect

759adaptation modifying language semantics at runtime.

760Introspection and structural reflection features can be

761used to make aspect development easier––like two ex-

762amples above.

763Our non-restrictive reflective platform gives us the
764opportunity to adapt running applications, even if the

765aspect is implemented after the application has been

766executed; using introspection and reflection, aspects can

767be dynamically woven as well as unwoven. Neither join-

768point definitions, nor MOP primitives, restrict the set of

769features that can be adapted.

770As an example of using our reflective aspect frame-

771work we have developed a dynamic user authentication
772aspect. Once the ‘‘Bank App’’ program has been started,

773we may implement an ‘‘Authentication Aspect’’ that

774would dynamically restrict in some way system�s meth-
775od-invocation semantics. In our example, we authenti-

776cate anyone who sends a ‘‘withdraw’’ message to every

777‘‘Account’’ object, verifying if that user has permission

778to make the withdrawal. This is a resume of that im-

779plementation:
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[1] Application¼ 00Authentication Aspect00
. . .

[2] def weaveAuthentication(self,appID,className,methodName):

[3] 00Language-independent authentication-aspect weaving routine00
[4] from aspectFacilities import *

[5] import aspectFacilities

[6] app¼self.nitrO.apps[appID]

[7] loadAspects(app,aspectFacilities)

[8] lang¼app.language

[9] if not(lang.hasMethodCallThisCode(app,lang.nameOfMethodBeingInvokedSemantics)):

[10] lang.injectCodeIntoMethodCall(app,lang.nameOfMethodBeingInvokedSemantics)

[11] if not(lang.hasMethodCallThisCode(app,lang.classNameOfMethodBeingInvokedSe-

mantics)):

[12] lang.injectCodeIntoMethodCall(app,lang.classNameOfMethodBeingInvokedSe-

mantics)

[13] if not(lang.hasMethodCallThisCode(app,lang.implicitObjectInMethodInvocationSe-

mantics)):

[14] lang.injectCodeIntoMethodCall(app,lang.implicitObjectInMethodInvoca-

tionSemantics)

[15] app.LoginWindow¼self.LoginWindow

[16] # Sample Authentication:login same as 0user0 attribute
[17] authCode ¼ 00if nodes½0�:className ¼¼ 0 00þ classNameþ 00 0and nodes½0�:methodName ¼¼ 0 00

þmethodNameþ 00 0 : 00
[18] authCode¼authCode+00 00 00
[19] application.loginWindow¼application.LoginWindow(application.window.mas-

ter,0Authentication0Þ
[20] if nodes[0].object.user!¼application.loginWindow.login:

[21] raise 0 User not authenticated!0
[22] 00 00 00
[23] if not(lang.hasMethodCallThisCode(app,authCode)):

[24] lang.injectCodeIntoMethodCall(app,authCode,3)

[25] def unweaveAuthentication(self,app,className,methodName):

[26] 00Language-independent authentication-aspect unweaving routine00
[27] from aspectFacilities import *

[28] import aspectFacilities

[29] app¼self.nitrO.apps[appID]

[30] loadAspects(app,aspectFacilities)

[31] lang¼app.language

[32] if lang.hasMethodCallThisCode(app,lang.nameOfMethodBeingInvokedSemantics):

[33] lang.deleteCodeFromMethodCall(app,lang.nameOfMethodBeingInvokedSemantics)

[34] if lang.hasMethodCallThisCode(app,lang.classNameOfMethodBeingInvokedSemantics):

[35] lang.deleteCodeFromMethodCall(app,lang.classNameOfMethodBeingInvokedSe-

mantics)

[36] if lang.hasMethodCallThisCode(app,lang.implicitObjectInMethodInvocationSemantics):

[37] lang.deleteCodeFromMethodCall(app, lang.implicitObjectInMethodInvocationSemantics)

[38] authCode¼ 00if nodes[0].className¼ ¼ 0 00þ classNameþ 00 0 and nodes[0].methodName¼
¼ 0 00þ methodNameþ 00 0 : 00

[39] authCode¼authCode+00 00 00
[40] application.loginWindow¼application.LoginWindow(application.window.master,

0Authentication0Þ
[41] if nodes[0].object.user!¼application.loginWindow.login:

[42] raise 0User not authenticated!0
[43] 00 00 00
[44] if lang.hasMethodCallThisCode(app,authCode):
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780 As in previous examples, this code has its own lan-

781 guage specification consisting in a simple reify statement

782 which defines a ‘‘weave’’ (lines 2–24) and ‘‘unveawe’’

783function (lines 25–45) and sets them as two aspect

784methods (lines 48and 49). The weave method enhances

785the message-passing semantics using different aspect

[45] lang.deleteCodeFromMethodCall(app,authCode)

[46] # Set the function as an application method

[47] nitrO.apps[00Authentication Aspect00].LoginWindow¼LoginWindow

[48] nitrO.apps[00Authentication Aspect00].__class__.weave¼weaveAuthentication

[49] nitrO.apps[00Authentication Aspect00].__class__.unweave¼unweaveAuthentication

[50] write(00Aspect n00 Authentication Aspectn00 installed.n n00Þ
[51] write(00Run nitrO.apps[n00Authentication Aspectn00].weave(n00AppNamen00,n00Class-

Namen00,n00MethodNamen00) to weave an application.nn00)
[52] write(00Run nitrO.apps[n00Authentication Aspectn00].unweave(n00AppNamen00,n00ClassNamen00,n00Meth-

odNamen00Þto unweave an application.nn00Þ
[53] write(00Closing this window the aspect will be uninstalled.nn00Þ
[54] #>

Fig. 7. Dynamic aspect weaving in the nitrO system.
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786 framework facilities. The new semantics checks if the

787 class and method names are the same as the parameters;

788 in that case, a window asking for the user�s identity will
789 be prompted. Following this modularization scheme, in

790 which aspect code is decoupled from its join-point

791 identification, our platform can be used as a highly re-
792 usable aspect-development system.

793 We can use this aspect to dynamically set an au-

794 thentication system to any running application. If the

795 result of weaving an application is not the one the user is

796 expecting––or it is no more needed––, it can be dy-

797 namically suppressed by means of the ‘‘unweave’’ aspect

798 method. Note that any dynamically configurable au-

799 thentication schema based on runtime-emerging con-
800 texts, as well as any kind of aspect runtime adaptation,

801 could be performed with this framework.

802 The running application windows are shown in Fig.

803 7. After having executed the ‘‘Bank App’’ program (the

804 lower graphic window), we might need to install a se-

805 curity mechanism to make withdrawals. Running the

806 ‘‘Authentication Aspect’’ program (the window in the

807 middle), the aspect will be installed in the system. If we
808 want to dynamically assign the aspect to the running

809 application, we just have to execute the next statement

810 in the nitrO shell (upper window):

811 nitrO.apps[00Authentication Aspect00].
812 weave(00Bank App00,00Account00,00withdraw00)

813 As shown in the center window of Fig. 7, when the

814 application is about to invoke the ‘‘withdraw’’ method,

815 a login window is shown because of the weaving process

816 just performed. If the user is authenticated, the method

817 will be executed (displaying the corresponding ‘‘With-

818 draw done!’’ message); in other case, the application

819 throws a ‘‘User not authenticated!’’ exception. The code

820 presented simply authenticates users by comparing their
821 logins with the ‘‘user’’ object�s attribute. Obviously, real
822 applications would verify user�s identity following dif-
823 ferent techniques, but this clear example shows how

824 aspects can easily interact with applications. This in-

825 teraction is straightforward in the nitrO platform be-

826 cause Python is always the unique system�s meta-
827 language.

828 In this sample scenario, the application functional
829 code has not been modified: we customize its language

830 semantics in the weaving process by means of compu-

831 tational reflection. We use Python as a meta-language

832 instead of defining application join-points or MOP-

833 based frameworks; so, our system does not restrict the

834 range of points where an aspect-advice call can be

835 placed.

8367.1. Dynamic adaptation of advanced aspects

837We are currently developing advanced dynamic as-

838pects over the nitrO platform applied to Java and Py-

839thon language specifications. An example is a group of

840aspects that gives an application the ability to be woven
841at runtime; they make specific objects persist by means

842of different indexing mechanisms and various levels of

843persistence (Ortin et al., 1999).

844Following the principle of separation of concerns,

845these Java aspects separate the application functional

846code from its persistence concerns. Dynamically, based

847on different runtime-emerging conditions (such as sys-

848tem load, time of the day, or a momentary requirement
849of faster application execution), different levels of per-

850sistence can be assigned to runtime objects, neither

851having to modify its functional code nor needing to stop

852its execution. Our system has been designed to be

853adaptable to different indexing mechanisms (Single

854Class, CH-Tree and Nested Index) and updating fre-

855quencies (creation and deletion of objects, modification

856of object�s state and at regular intervals of time).
857Persistence aspects are being developed using differ-

858ent levels of reflection:

8591. Introspection is used to obtain existing objects and

860classes as well as all of their fields and methods. This

861information is dynamically serialized and saved on

862disk by using system introspection.

8632. Structural reflection is employed to dynamically cre-

864ate, modify and erase existing objects, classes, fields

865and methods. The need to perform these operations

866in our persistence system emerges at runtime––this
867is the reason why the use of reflection is essential.

8683. Computational reflection is the key concept em-

869ployed to link the application functional code with

870the persistence aspect routines. At present, we cus-

871tomize object creation, object deletion and method

872invocation semantics.

8738. Runtime performance

874The main disadvantage of dynamic weaving is run-

875time performance (B€oollert, 1999). The process of

876adapting an application at runtime, as well as the use of

877reflection, induces a certain overhead at the execution of

878an application (Popovici et al., 2001).

879Although there are aspects that will benefit from the
880use of dynamic weaving, this is not needed in many

881cases. If this situation occurs, static weaving should be

882used in order to avoid performance penalties. In our

883platform, the weaving process could also be done stati-

884cally the same way it is performed at runtime: modifying

885language specifications.

F. Ortin, J. Manuel Cueva / The Journal of Systems and Software xxx (2002) xxx–xxx 13

JSS 7422 No. of Pages 15, DTD =4.3.1

9 December 2002 Disk used SPS-N, Chennai
ARTICLE IN PRESS



UNCORRECTED
PROOF

886 While developing aspect-oriented applications, the

887 dynamic adaptation mechanism is preferable because it

888 facilitates incremental weaving and makes application

889 debugging easier. Upon deployment, aspects that do not

890 need to be adapted at runtime should be woven stati-

891 cally for performance reasons.
892 Another performance limitation of our reflective

893 platform is caused by the interpretation of every pro-

894 gramming language. Nowadays, many interpreted lan-

895 guages are commercially employed––e.g., Java (Gosling

896 et al., 1996), Python (Rossum, 2001) or C# (Archer,

897 2001)––due to optimization techniques such as just-in-

898 time (JIT) compilation or adaptable native-code gener-

899 ation (H€oolzle and Ungar, 1994). In the following versions
900 of the nitrO platform, these code generation techniques

901 will be used to optimize the generic-interpreter imple-

902 mentation. As we always translate any language into

903 Python code, a way of speeding up application execution

904 is using the interface of a Python JIT-compiler imple-

905 mentation––such as the exploratory implementation of

906 Python for. NET (Hammond, 2001) that uses the. NET

907 common-language-runtime (CLR) JIT compiler.

908 9. Conclusions

909 AOP is focused on the separation of crosscutting

910 application concerns. Aspect-oriented tools create the

911 final application by weaving both the program�s func-
912 tional code and the application�s specific aspects. Sepa-
913 rating the main code from the specific crosscutting

914 concerns makes application source code not being tan-

915 gled, achieving ease of creation, debug, maintenance and

916 adaptation of applications to new aspects.

917 Most AOP tools simply support static weaving, not

918 offering the ability to dynamically adapt or replace ap-

919 plication aspects by means of dynamic-weaving tech-

920 niques. Although many aspects do not need this
921 flexibility, specific ones could benefit from it. The few

922 existing dynamic weavers offer runtime adaptability in a

923 restricted way. They also lack language independence,

924 not offering a system in which adaptability is achieved

925 regardless of the programming language being used.

926 We have developed the nitrO platform in which a

927 non-restrictive reflective technique has been imple-

928 mented to overcome the previously mentioned limita-
929 tions. This platform has been used to develop a

930 language-independent AOP framework that offers dy-

931 namic aspect (un)weaving, without any predefined re-

932 striction. Applications can be dynamically adapted to

933 unpredicted design-time concerns.

934 Application concerns are defined at the programming

935 language level, not at the application level. This feature

936 offers aspect reutilization when developing system as-
937 pects such as persistence or security (Foote, 1992).

938The AOP framework offers a language-independent

939aspect-development system based on dynamic detection

940and load of specific language routines. We separate the

941language-neutral aspect development from the specific-

942language function implementations that have to be in-

943cluded separately in the framework.
944The platform also offers great application interoper-

945ability. Any application may inspect, and dynamically

946modify, any aspect of another program––an application

947may also adapt itself. Therefore, there is no need to stop

948an application in order to adapt it at runtime: another

949one may be used to customize the former.

950Finally, no restrictions are imposed by application

951join-points specification. In most AOP tools, applica-
952tions must define points where they might be adapted at

953runtime, by previously specifying their join-points.

954Others, like PROSE (Popovici et al., 2001), use a MOP

955that also restricts its adaptability. In nitrO, the whole

956application is adaptable at runtime: its structure and its

957programming language�s semantics can be inspected and
958dynamically modified––not needing to previously spec-

959ify what might be customized. Applications can be
960adapted to new runtime-emerging aspects, unpredictable

961at design time.

962The current platform implementation has perfor-

963mance disadvantages. However, we expect that the em-

964ployment of a Python JIT compiler in future versions

965will show common dynamic-weaving performance. The

966main goal of our first implementation was overcoming

967the limitations of existing dynamic-weaving tools we
968have pointed out.

969The Python platform source code and some testing ap-

970plications can be downloaded from http://www.

971di.uniovi.es/reflection/lab/prototypes.

972html#nrrs.
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