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Abstract

Context: The aspect-oriented paradigm is aimed at solving the code scattering and
tangling problem, providing new mechanisms to support better separation of concerns.
For specific scenarios where high runtime adaptability is an important requirement,
dynamic Aspect-Oriented Programming (AOP) represents a useful tool. With dynamic
AOP, components and aspects can be woven and unwoven at runtime, enabling appli-
cations greater responsiveness when dealing with different or changing requirements.
However, this responsiveness typically incurs a cost in terms of runtime performance
and memory consumption.

Objective: Build an efficient dynamic aspect weaver for Java that provides the best
runtime performance compared to the existing approaches, minimum memory overhead
consumption, and similar functionalities to the widespread runtime weavers.

Method: We design and implement weaveJ, a dynamic aspect weaver for Java. This
dynamic weaver leverages the invokedynamic opcode introduced in Java 7, which allows
dynamic relinkage of method and field access. We compare the functionalities of weaveJ
with the existing dynamic weavers for Java, and evaluate their runtime performance
and memory consumption.

Results: weaveJ shows the best runtime performance for all benchmarks and real
applications executed. Method interception with invokedynamic is at least 142% faster
than the techniques used by the existing runtime weavers. The average cost of dynamic
weaving using invokedynamic is only 2.2% for short running programs, and 1.5% for
long running applications. Moreover, the use of aspects in weaveJ does not imply
additional memory consumption.

Conclusion: The dynamic aspect weaver implemented demonstrates that invoke-
dynamic is a suitable mechanism to provide efficient runtime aspect weaving for Java
applications. Moreover, it supports concurrent and programmatic aspect (un)weaving
at any point of execution, a wide set of join points, class and object weaving, and allow
aspects to have their own state. Neither the Java language nor the virtual machine
needs to be modified.

Keywords: Runtime adaptation, aspect weaving, invokedynamic, aspect-oriented
programming, Java, runtime performance
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1. Introduction

Modularity is one of the objectives in software development. It is aimed at sepa-
rating the different concerns in an application, providing a higher level of abstraction,
concern reuse, better legibility of each concern in isolation, and higher software main-
tainability [1]. Although the existing programming paradigms and languages provide
different abstractions to modularize applications, some concerns cannot be easily sep-
arated from others [2]. Examples of such concerns are logging, information security,
caching and persistence [3]. The code of these cross-cutting concerns is commonly
spread out over multiple modules, and tangled with code of other concerns: i.e., the
code scattering and tangling problem [4].

As mentioned earlier, some cross-cutting concerns cannot be easily decomposed from
the rest of modules using the traditional programming paradigms. For this reason, the
aspect-oriented paradigm includes programming techniques to support the Separation
of Concerns (SoC) principle at the source code level [5]. The code that cannot be mod-
ularized with the traditional paradigms is implemented with aspects, which are later
woven with the components of the application. In this way, components and aspects
modularize the different concerns in an application, overcoming the code scattering and
tangling problem [2].

Depending on the requirements of applications, aspects can be woven statically
(before running the application), at load time (when the classes are first loaded into
memory) or dynamically (in a particular point of execution) [6]. Static and load-time
weaving commonly provide a relatively small runtime performance penalty, because
the component and aspect code is woven before running the application [7]. AspectJ is
a widespread aspect-oriented extension to Java that supports load-time weaving with
little runtime performance cost [8].

There are specific scenarios where dynamic weaving represents a helpful tool. For
example, dynamic weaving has been used in handling Quality of Service (QoS) require-
ments in distributed systems [9], managing web cache prefetching [10], implement-
ing adaptable security mechanisms in distributed systems [11], balancing the load of
RMI applications [12], and changing the control policy of distributed systems [13]. In
these cases, dynamic weavers facilitate the implementation of highly runtime-adaptable
systems. However, runtime weaving commonly implies significant performance penal-
ties [7].

To facilitate the efficient implementation of dynamic languages, the new invoke-

dynamic instruction was added to the Java 7 Virtual Machine (JVM) [14]. This opcode
allows users to define and modify method linkage at runtime, applying the existing
hotspot optimizations for the JVM [15]. Since this dynamic method linkage is related
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to the way dynamic weaving works, invokedynamic has been previously identified
as a suitable mechanism to provide dynamic aspect weaving [16, 17, 18] –detailed in
Section 6. However, this hypothesis has not been validated with the implementation
of a dynamic aspect weaver with a set of join points similar to the existing runtime
weavers, and thereby no runtime performance evaluation and comparison with existing
systems has been undertaken.

The main contribution of this article is weaveJ, an efficient dynamic aspect weaver
for Java using the invokedynamic JVM opcode, and the evaluation of its runtime per-
formance and memory consumption compared to the existing tools. Runtime weaving
with weaveJ is provided as an API, so that programmers can use it programmatically
without the knowledge of aspect-oriented languages such as AspectJ. Unlike other ap-
proaches, it supports both class and object weaving, and aspects can have their own
state because they can be managed as objects. weaveJ provides a wide set of join points
and modifies neither the JVM nor the Java language, so any standard Java language
and platform implementation can be used. We have evaluated its runtime performance
as the best among the existing dynamic aspect weavers for Java (Section 5). Moreover,
it does not consume more memory resources than plain Java applications.

The rest of this paper is structured as follows. Section 2 presents an example showing
the features of weaveJ, our aspect weaver. invokedynamic is described in Section 3,
and Section 4 presents the architecture of weaveJ. Section 5 evaluates and compares
the existing dynamic aspect weavers, including weaveJ. Related work is discussed in
Section 6, and Section 7 presents the conclusions and future work.

2. Motivating example

The following example illustrates some of the features provided by weaveJ. The first
part of the example presents how to adapt a running application programmatically.
The second part demonstrates how runtime adaption of any Java class can be achieved
with two general purpose aspects, illustrating how these aspects can be developed even
after application execution. The source code is freely available at [19].

2.1. Programmatic runtime adaptation of particular classes

Figure 1 shows an example component to be adapted at runtime. It models credit
cards with ID and balance fields and deposit and withdraw methods. Any class and
object could be adapted by weaveJ at runtime, following the POJO (Plain Old Java
Object) approach [20]. As shown in Figure 1, CreditCard requires no additional class
extension, interface implementation or member annotation.

Figure 2 shows another Java class used as an aspect. In particular, the apply-

Commission method charges a commission (commissionPercentage) to a credit card,
if the amount is lower than a given minValue. applyCommission receives the credit
card, the method intercepted and the parameter passed to the intercepted method. The
method is represented with an instance of the MethodHandle added in Java 7, which
provides significantly better runtime performance than reflection [15].
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01: public class CreditCard { 
02:     private double balance; 
03:     private long ID; 
04:  
05:     public CreditCard(double balance) { 
06:         this.balance = balance; 
07:         ID = CardManager.ID_COUNTER++; 
08:     } 
09:  
10:     public double deposit(double amount) { 
11:         return this.balance += amount; 
12:     } 
13:  
14:     public double withdraw(double amount) { 
15:         if (amount <= this.balance) { 
16:             this.balance -= amount; 
17:             return amount; 
18:         } 
19:         return 0; 
20:     } 
21: } 

Figure 1: Example component to be adapted at runtime.

Figure 3 shows different ways to weave components and aspects. First, two credit
cards and one commission aspect are created. Then, by using the Weaver class of
our API, the CreditCard.withdraw method is woven with applyCommission in the
commission aspect instance (lines 4-6). From this point of execution on, all the with-
drawals against any credit card will be intercepted by the aspect (around method call).
Notice that the runtime behavior depends on the dynamic state of the commission

aspect instance: it applies 2% commissions to amounts below 100. The programmer
may apply different types of commissions by using different instances of the same class
or changing the state of the existing one, following a common object-oriented approach.
This approach is different to the one in AspectJ, where aspect instantiation cannot be
done programmatically in a particular point of execution.

The example above showed how to perform dynamic weaving of a component class.
It is important to note that weaveJ also allows weaving of single objects. This is shown
in the second invocation to weaveAspectForMethodAround (lines 11-14 of Figure 3),
where only the card2 instance is woven. More precisely, the rewardSignificant-

Deposit method in the aspect will be called when a deposit is done with card2 (for
this particular object, 0.5% extra credit is applied for deposits equal or greater than
100,000).

In cases where the developer wants an aspect to be no longer woven, the last two
lines in Figure 3 show how to perform dynamic unweaving, returning the component
to its original state.

2.2. Runtime adaptation of any class

In this section, we will demonstrate how to profile an application and generate log
information during a particular execution interval, using weaveJ. These two profiling
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01: public class CommissionAspect { 
02:     private double commissionPercentage; 
03:     private double minValue; 
04:  
05:     public CommissionAspect(double commissionPercentage, double minValue) { 
06:         this.commissionPercentage = commissionPercentage; 
07:         this.minValue = minValue; 
08:     } 
09:  
10:     public double applyCommission(MethodHandle mh, CreditCard card,  
11:                                   double amount) { 
12:         System.out.printf("+ Aspect: applying commission to %s... %b\n", card, 
13:                           amount < this.minValue); 
14:         double funds = (double) mh.invokeWithArguments(card,  
15:                              amount >= this.minValue ? amount :  
16:                              amount * (1 + this.commissionPercentage / 100)); 
17:         return funds > 0 ? amount : 0; 
18:     } 
19:  
20:     private static double reward_over_amount = 100_000;  
21:     private static double reward_percentage = 0.5; 
22:  
23:     public static double rewardSignificantDeposit(MethodHandle mh,  
24:                                             CreditCard card, double amount) { 
25:         System.out.printf("+ Aspect: Checking reward for deposit of %s...%b\n",  
26:                           card, amount >= reward_over_amount); 
27:         return (double)mh.invokeWithArguments(card, amount < reward_over_amount ? 
28:                                  amount : amount * (1 + reward_percentage/100)); 
29:     } 
30: } 

Figure 2: Example class used as an aspect.

and logging aspects are useful if we detect an erroneous behavior or bad performance
in a particular point of execution. For this case scenario, dynamic weaving is a suitable
tool because it allows adding and removing aspects at runtime [21]. We now show how
to implement this behavior with weaveJ.

Figure 4 presents the two new aspects to provide runtime profiling and logging.
TraceAspect provides two methods to log any method invocation before and / or
after its execution1. These methods use the before and after method call interception,
common in aspect-oriented programming [8]. Likewise, ProfilerAspect can be used
to measure the execution time elapsed in a method invocation. Its profileOperation
method is used for around method call interception, as the code in Figure 3.

The GUI application in Figure 5 allows (un)weaving any class in a running applica-
tion using the two aspects in Figure 4. On the left-hand side, the user writes the name
of the package where the components to be adapted are placed. Then, they select the
class and member (method or field) to be woven. On the right-hand side of the figure,
the user can log or profile the selected member (for logging, they must indicate before

1Signatures of aspect methods are checked by the aspect weaver. They may contain the original
types (e.g., CreditCard) or a more general type using polymorphism (e.g., Object). The Java method
overloading resolution algorithm is used to select the appropriate signature [22].
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01: CreditCard card1 = new CreditCard(1_000), card2 = new CreditCard(1_000_000); 
02: card1.withdraw(50); 
03: CommissionAspect commission = new CommissionAspect(2, 100); 
04: Pointcut pointcutWithdraw = Weaver.weaveAspectForMethodAround( 
05:                     "example.component.CreditCard", "withdraw", commission, 
06:                     "applyCommission", double.class, double.class); 
07: card1.withdraw(50); 
08: card2.withdraw(50); 
09: card2.withdraw(200); 
10:  
11: Pointcut pointcutDeposit = Weaver.weaveAspectForMethodAround( 
12:               "example.component.CreditCard", "deposit", 
13:               "example.aspect.CommissionAspect", "rewardSignificantDeposit", 
14:               new Object[] {card2}, double.class, double.class); 
15: card2.deposit(100_000); 
16: card2.deposit(100); 
17: card1.deposit(100_000); 
18:  
19: pointcutWithdraw.unweave(); 
20: pointcutDeposit.unweave(); 

Figure 3: Programmatic runtime weaving.

or after method execution). At runtime, when an aspect is woven, the logging and
profiling messages in Figure 4 will be displayed. When profiling or logging is no longer
necessary, the trash button can be clicked to unweave the selected member, going back
to the original application execution.

2.3. Functional features of weaveJ

The previous example has illustrated the main features of weaveJ:

1. Aspects can have their own state. The commission aspect in Figure 3 (line 3)
considers its state (2% of commission) to apply a charge to all the withdrawals.

2. Object and class weaving. weaveJ allows intercepting methods of one single in-
stance (card2 in line 14 of Figure 3) –i.e., object weaving– and all the instances
of a given class (CreditCard in line 5) –i.e., class weaving.

3. Programmatic weaving without language extensions. The code in Figure 3 il-
lustrates how aspect (un)weaving is provided as a simple API, and it does not
require learning any language extensions.

4. Thread safety. The profiling and logging application presented in Section 2.2
showed how an application can be concurrently (un)woven while it is running.

5. Standard JVM. weaveJ can be used with any standard implementation of the
Java platform, since no modifications to the JVM are made.

6. No coupling between components and aspects. Aspects and components are PO-
JOs (Figures 1 and 2), requiring no class extension, interface implementation
or member annotation. weaveJ imposes no coupling between them, so aspects
can be created even after the application started running. Line 13 in Figure 3
shows how aspect classes and methods can be specified with strings (i.e., not with
Java Class<T> instances) upon weaving, thereby postponing its evaluation until
runtime.
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01: public class TraceAspect { 
02:   public static void traceAfter(String methodName, Object object, Object result) { 
03:     System.out.printf("> End of the %s method with result %s.", methodName, result); 
04:   } 
05:   public static void traceBefore(String methodName, Object object, Object parameter) { 
06:     System.out.printf("> Begining of the %s method with object %s and param %s.", 
07:                       methodName, object, parameter); 
08:   } 
09: } 
 

01: public class ProfilerAspect { 
02:   public static Object profileOperation(String methodName, MethodHandle mh,  
03:                                         Object object, Object parameter) { 
04:     long timeBefore = System.nanoTime(); 
05:     Object result = mh.invokeWithArguments(object, parameter); 
06:     System.out.printf("> Elapsed time invoking %s against the %s object: %d nanos.", 
07:                       methodName, object, System.nanoTime() - timeBefore); 
08:     return result; 
09:   } 
10: } 
 

Figure 4: Tracing and logging aspects.

Figure 5: Runtime weaving of any component.

7. Wide set of join points. Although the previous example only used before, after
and around method interception, weaveJ allows the interception of other nine join
points (see Section 5).

3. The invokedynamic instruction

The invokedynamic JVM opcode provides a user-defined dynamic linkage mecha-
nism, postponing method and field access resolution until runtime. As shown in the
Application class in Figure 6, an invokedynamic instruction is initially in an unlinked
state, meaning that the actual method to be called is unknown at compile time. An
invokedynamic instruction indicates the method responsible for conducting the dy-
namic method selection (i.e., the link method of the Bootstrap class in the center of
Figure 6), called bootstrap method in the Java documentation [23].
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public class Methods {

public static int m1(…) {…}

public static int m2(…) {…}

}

public class Application {

public void m(…){

…

invokedynamic … "Bootstrap"

, "link" …

…

}}

public class Bootstrap {

public static CallSite link(…){

MethodHandle mh = lookup.findStatic(

Methods.class, "m1",…);

return new VolatileCallSite(mh);

}}

CallSite

MethodHandle

Figure 6: Runtime linkage with invokedynamic.

An invokedynamic instruction is linked upon its first execution. At runtime, the
JVM calls the bootstrap method, which performs the dynamic method resolution. It
returns a CallSite holding the MethodHandle representing the selected method (m1
in the Methods class). In this point of execution, the invokedynamic instruction is
considered linked. From this point of execution on, the following invocations simply
call the method referenced by the returned MethodHandle. Moreover, the JVM applies
the usual optimizations performed for common statically typed method invocations.

A bootstrap method returns one implementation of the CallSite abstract class.
The standard Java invoke package offers three CallSite implementations: Constant-
CallSite for permanent method handles that cannot be relinked, and VolatileCall-

Site and MutableCallSite if relinking is necessary –the main difference between these
two classes is that VolatileCallSite supports multi-threading. When we want to
relink a method because some event occurred at runtime, the VolatileCallSite and
MutableCallSite provide a setTarget method to change the MethodHandle in the
CallSite. As shown in Figure 6, this mechanism can be used to change the method
invoked in the next execution of the same invokedynamic instruction (in our example,
calling m2 instead of m1).

4. Architecture

The architecture of weaveJ is presented in Figure 7, showing all its elements and the
interaction with the external packages. Figure 8 details its dynamic behavior, showing
how components and aspects are dynamically (un)woven.

4.1. Static view

weaveJ implements a Java agent to provide class instrumentation at load time.
When the JVM is about to load a class file into memory, the Java agent modifies its
assembly code (Figure 7). Particularly, weaveJ replaces eight statically typed opcodes,
invoke{virtual, interface, static, special} and {get, set}{field, static}, with
the appropriate invokedynamic instruction. This code instrumentation has been im-
plemented using the OW2 ASM bytecode manipulation framework [24] and the Jindy
library [15].
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JAVA VIRTUAL MACHINE

Component.class Aspect.class

weaveJ Java Agent

VolatileCallSite
setTarget(MethodHandle)

<<dynamically generated>> 

Adapter
adapterMethod(…)

The Java agent modifies the code, replacing existing opcodes in the .class file with invokedynamic

Bootstrap Method
link(…): CallSite

MethodHandle
invoke(…)

Weaver
weaveAspectForMethodAround()

Pointcut
unweave()

<<instrumented>>

Component
componentMethod(…)

<<instrumented>>

Aspect
aspectMethod(…)

generates

weaveJ

*

1

1

*

*

1

1

1

JINDYOW2 ASM

Figure 7: Architecture of weaveJ.

The purpose of using invokedynamic is to allow the later adaptation of applications
without stopping their execution. To this aim, weaveJ dynamically provides differ-
ent bootstrap methods that resolve each invokedynamic instruction with the original
method used in the application. That is, the invokedynamic instructions will call the
same methods as the original code, but they will allow the later relinkage of methods
at runtime to provide method interception. Once the link is established, the JVM per-
forms different hotspot optimizations to provide a runtime performance close to the
original opcodes [15].

For each bootstrap method, weaveJ uses one VolatileCallSite to allow the con-
current relinkage of the associated method or field at runtime. Figure 7 shows how the
bootstrap methods return one VolatileCallSite wrapping a MethodHandle pointing
to the original method in the component (blue arrow). The bootstrap method also
registers the returned CallSite in the Weaver class to allow the later adaptation of the
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associated MethodHandle.
When the application is running, it could be adapted without stopping its execution.

At runtime, a new aspect could be implemented, compiled and placed in the application
directory (or in the JVM classpath). By using the Weaver class, the compiled aspect can
be loaded dynamically as shown in line 13 of Figure 3. Once loaded, the aspect can be
used to adapt any running component, using the services provided by the Weaver class.
It is not necessary to foresee which parts of the application will need to be adapted:
any invokedynamic instruction could be intercepted.

The Weaver class provides different methods for runtime weaving (e.g., weave-

AspectForMethodAround) by relinking the method with invokedynamic. The invoke-
dynamic instruction requires the new method to have the same signature as the original
one. However, as shown in Figure 4, many aspects require additional information such as
the original method and its name. This is the reason why weaveJ dynamically creates an
intermediate Adapter class to connect the component and the aspect. Using OW2 ASM,
our weaver generates the binary code of the Adapter. This class simply receives the
original parameters and calls the selected aspect, passing additional information. Since
the adapter is created dynamically, the specific types of the original method signature
are passed (instead of Object) avoiding the use of reflection, and hence obtaining better
runtime performance [25].

Once the Adapter class is generated, the Weaver selects the CallSite instance as-
sociated to the component to be woven, and performs the runtime weaving by changing
the method pointed by the MethodHandle. In Figure 7, this dynamic weaving pro-
cess is represented with the replacement of the blue arrow by the red one, causing the
invocation to the aspect method via the dynamically generated Adapter.

If the method is woven with the around behavior, the original method will not be
called (the adapter, and hence the aspect, are called instead). However, if the program-
mer selects either before or after weaving, the original method must be transparently
invoked by weaveJ. For this type of interceptions, the dynamically generated Adapter

invokes the original component method before or after calling the aspect.
Any aspect could be unwoven at runtime. For that purpose, weaveJ provides Point-

cut objects, which are returned when components and aspects are woven (lines 4 and
11 in Figure 3). The unweave method in Pointcut updates its MethodHandle to the
previous one in the chain of runtime adaptations [6]. Since the particular Adapter

for an unwoven aspect is no longer necessary, it could be deleted by the JVM garbage
collector.

A woven component could be adapted with another aspect. In that case, weaveJ
actually weaves the last aspect woven with the component, following the semantics
described in [26].

4.2. Dynamic view

Figure 8 shows a dynamic view of the architecture in Figure 7. Particularly, it
details how the elements of the architecture are used to provide the runtime weaving
caused by part of the code in Figure 3. The following enumeration describes the steps
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of the sequence diagram in Figure 8 (each step number in the enumeration is circled in
Figure 8).

1. When the main application class is loaded into memory, the weaveJ Java agent
is called.

2. That agent

(a) Instruments the class, replacing eight opcodes with invokedynamic (Sec-
tion 4.1).

(b) For each invokedynamic instruction, an associated bootstrap method is
specified.

3. The application is executed (its main method is called by the JVM).

4. As in step 2, the CreditCard component is instrumented by the agent and loaded
into memory.

5. The withdraw method in CreditCard is called (line 2 in Figure 3).

(a) Since the invokedynamic instruction is not linked yet, the associated boot-
strap method is called.

(b) The bootstrap method creates a VolatileCallSite.
(c) The created CallSite wraps a new MethodHandle pointing to the withdraw

method in CreditCard.
(d) The CallSite is registered in the Weaver, which stores the CallSite asso-

ciated to each method in a hash table.
(e) The MethodHandle in the returned CallSite is linked to the invokedynamic

instruction and executed by the JVM, performing the appropriate optimiza-
tions.

6. If withdraw is invoked, the linked method will be executed directly (no bootstrap
method is called) causing no performance penalty [15].

7. A new CommissionAspect is compiled and placed in the application directory.

8. A weaveAspectForMethod{Around, Before, After} method of Weaver is called
(line 4 in Figure 3), indicating the component (CreditCard), the aspect (Com-
missionAspect) and the methods to be woven (withdraw and applyCommission,
respectively).

(a) CommissionAspect is loaded into memory and instrumented by the agent.
(b) An Adapter is dynamically generated to connect the component and the

aspect.
(c) The Weaver creates a new MethodHandle pointing to the adapter method.
(d) The Weaver searches for the CallSite associated to withdraw in its hash

table, and changes the wrapped MethodHandle (setTarget) to the new one
pointing to the Adapter.

(e) A Pointcut is created and returned to the caller.

9. After weaving, the withdraw method is called (line 7 in Figure 3).

(a) The JVM invokes the Adapter method instead (method interception).
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9

setTarget()

Figure 8: Dynamic view of weaveJ.

(b) The Adapter calls applyCommission in the aspect (around interception).
(c) For after interceptions, the original method in the component (withdraw) is

called by the Adapter.

10. If the unweave message is passed to the Pointcut (line 19, Figure 3), the associ-
ated MethodHandle is replaced with the original one (setTarget).

11. A new invocation to withdraw will simply call that method (no interception).

4.3. Complexity of weaveJ

We can discuss the complexity of weaveJ from its dynamic behavior described in
the previous subsection. Class instrumentation performed by the Java agent (steps 2,
4 and 8.a) replaces some opcodes with invokedynamic. Although the time complexity
of this process is linear in the number of instructions in a class file, it only takes place
once, when the class is loaded into memory.
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In the first execution of an invokedynamic instruction (step 5), CallSite and
MethodHandle creation, and bootstrap method invocation are executed in constant
time. CallSites are registered in the Weaver using a Java HashMap, which provides
constant time in the average insert (put) scenario (when the hash function disperses the
elements properly) and linear time in the worst-case scenario. Aspect weaving (step 8)
shows the same time complexity, as it uses the very same data structure to get the
CallSites.

Once the method is linked, the JVM applies the same optimizations as with direct
method invocation (step 6) [15]. Intercepted methods have constant time complexity
because the adapter simply performs an invocation to the associated aspect method
(step 9). Similarly, the time complexity of unweaving is constant, since both the com-
ponent and the aspect MethodHandles are stored in the Pointcut as references.

Aspect weaving and unweaving have linear space complexity in the number of meth-
ods, caused by the hash table used by the Weaver. Space complexity for the rest of
operations is constant.

5. Evaluation

This section is aimed at evaluating weaveJ and compare it to the existing runtime
weavers for Java. The first subsection outlines the experimental methodology used. We
then present and discuss runtime performance and memory consumption of the systems
analyzed.

5.1. Methodology

5.1.1. Runtime weavers measured

We have studied the existing aspect platforms that support runtime (un)weaving
for Java (detailed in Section 6), analyzing whether they provide the features supported
by weaveJ (Section 2.3). A summary of that analysis is presented in Table 1, and
a detailed discussion is depicted in Section 6. Out of all the platforms analyzed, we
evaluate runtime performance and memory consumption of those whose features are
close to weaveJ. Particularly, we have selected those that provide programmatic run-
time (un)weaving at any point of execution. These are the specific implementations
evaluated:

– JBoss AOP 2.1.8.GA [27]. JBoss AOP is a 100% pure Java aspect-oriented frame-
work that can be used in any Java programming environment, or integrated with
an application server. It offers a prepackaged set of aspects that can be applied
via annotations and pointcut expressions at runtime. Java 6+ is required.

– Spring 4.3.9 [28]. Spring is a layered JEE application framework that supports
Aspect-Oriented Programming (AOP). Spring Java runs over Java 6+. It offers
an API to add and remove advice at runtime, supporting both load-time and
dynamic weaving. Spring Java also supports static weaving through AspectJ.
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Feature JBoss AOP Spring JAsCo PROSE AABC JooFlux JAC Appeltauer

1 Partially Yes Yes Yes Partially Yes Yes Yes
2 Partially Yes Yes Yes Yes Yes Yes
3 Yes Yes Yes Yes Yes Yes Yes
4 Yes Partially Yes Yes Yes Partially
5 Yes Yes Partially Yes
6 Yes Yes Yes
7 Partially Yes Partially Partially Yes Yes
8 Yes Yes Yes Yes Yes Yes
9 18 3 3 5 3 2 2 3

Table 1: Support of the features implemented by weaveJ (features: 1 = runtime weaving at any
point of execution; 2 = runtime unweaving at any point of execution; 3 = concurrent (un)weaving;
4 = no coupling between components and aspects; 5 = programmatic (un) weaving; 6 = class and
object weaving; 7 = aspects can have their own state; 8 = standard implementation of JVM and Java
language; 9 = number of join points).

– JAsCo 0.8.7 [29]. A dynamic AOP language originally tailored for the component-
based field. The JAsCo technology allows dynamic integration and removal of as-
pects with low performance overhead. The JAsCo language is an aspect-oriented
extension of Java. It requires a Java 5 compatible virtual machine.

– PROSE 1.4.0 [30]. PROSE (PROgrammable extenSions of sErvices) allows aspect-
oriented Java programs to be modified at runtime. PROSE supports dynamic
weaving and unweaving of aspects, even if they are unknown at compile time. We
have evaluated the PROSE 1.4.0 JVMDI/JVMTI event notification based weaver
for the JDK 5.

– weaveJ 1.0. The implementation of our dynamic aspect weaver using the invoke-
dynamic opcode for Java 7+ [19].

Besides evaluating the previous aspect weavers, we also implement an object-oriented
Java version of each program measured to evaluate the cost of runtime weaving.

5.1.2. Programs measured

We have used different programs to evaluate the efficiency of the selected weavers,
including a synthetic micro-benchmark and three real applications [19]:

– Micro-benchmark. We have implemented a synthetic micro-benchmark to mea-
sure the cost of join point interception. Table 2 shows how the existing runtime
weavers offer a significantly different number of join points. Each cell shows if the
before, after and around interceptions are provided. We can see how weaveJ is the
second platform in the number of join points supported. The difference between
JBoss AOP and weaveJ is that weaveJ does not support method and constructor
execution.

To measure the cost of method interception, the synthetic micro-benchmark eval-
uates the method call join point provided by all the weavers (for JAsCo, we
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JBoss AOP Spring AOP JAsCo PROSE weaveJ

Method call All All All All
Method execution All All
Constructor call All All
Constructor execution All
Field get All Around All
Field set All Around All

Total 18 3 3 5 12

Table 2: Join points provided by different runtime aspect weavers (all represents the support of before,
after and around).

measure method execution since that is the only join point supported). The
micro-benchmark weaves a method invocation with an aspect that increments
an int field using before, after and around interceptions. The counter is incre-
mented with one integer parameter passed to the aspect, and the result of the
computation is returned. Its source code can be downloaded from [19].

– Mobile communications. This application is based on mobile device communi-
cations, where network topologies and communication channels may dynamically
change [31]. If the user is connected to a distributed system and it is detected that
the communication channel is not secure any more, information is forwarded to a
more secure node where transmissions may be encrypted. In this case, an aspect
is woven with the distributed application at runtime to tag data for the correct
transmission of information through the network [31]. The aspect also forwards
the information to the encryption node. Finally, if the mobile device returns to a
trusted environment, the aspect is unwoven to avoid any unnecessary overhead.
A detailed description of its implementation can be consulted in [31].

– FTP application. We added dynamic aspect weaving to an existing client-server
FTP application2 to cipher all the messages exchanged between the client and
the server, when a more secure communication is needed. It is feasible to cipher
the channel when critical information is exchanged (e.g. during the client login
process), and to use the open channel when the exchanged information is not
confidential. In a standard client-server FTP communication, the information is
sent and received directly. In an enhanced scenario where ciphering is enabled,
all the information passes through a dynamically woven aspect, responsible for
encrypting and decrypting data. Before either the server or the client send a FTP
command, the aspect encrypts the message; and just after a FTP command is
received, the same aspect decrypts it. Thus, the exchanged information travels
ciphered using the same channel, transparently to both the client and the server.
If the aspect is then unwoven, information travels unencrypted, as it did in the

2Apache MINA FTP Server https://mina.apache.org/ftpserver-project and JFtp Java Net-
work Browser http://j-ftp.sourceforge.net.
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original scenario [31].

– JHotDraw. We have extended the well-known JHotDraw GUI framework with
runtime aspect weaving using weaveJ [32]. Figures are modeled with components
and its representation is implemented with aspects as proposed in [33]. We provide
visual and textual representation aspects, which can be dynamically (un)woven
without modifying the implementation of the figure components. Logging and
profiling is also supported with dynamic weaving, allowing the addition and dele-
tion of these concerns while the application is running (implementation details
in [34]).

5.1.3. Data analysis

Measuring execution time of Java programs is not trivial because it is affected by
many factors such as just-in-time (JIT) compilation, hotspot dynamic optimizations,
thread scheduling and garbage collection. This non-determinism at runtime causes
the execution time of Java programs to differ from run to run. In fact, it has been
shown how some existing methodologies can be misleading and even lead to wrong
conclusions [35]. For this reason, an accurate data analysis must be used to cope with
that non-determinism.

We have followed the statistically rigorous methodology proposed by Georges et
al. [35], which is widely accepted to measure Java applications [36]. That methodology
considers two kinds of performances: 1) start-up performance is how quickly a system
can run a relatively short-running application; 2) steady-state performance concerns
long-running applications, where start-up JIT compilation does not involve a significant
variability in the total running time, and hot-spot dynamic optimizations have been
applied.

To measure start-up performance, a two-step methodology is used:

1. We measure the execution time of running multiple times the same program. This
results in p measurements xi with 1 ≤ i ≤ p.

2. The confidence interval for a given confidence level (95%) is computed to eliminate
measurement errors that may introduce a bias in the evaluation. The computation
of the confidence interval is based on the central limit theorem. That theorem
states that, for a sufficiently large number of samples (commonly p ≥ 30), x (the
arithmetic mean of the xi measurements) is approximately Gaussian distributed,
provided that the samples xi are independent and they come from the same
population [35]. Therefore, taking p = 30, we can compute the confidence interval
[c1, c2] using the Student’s t-distribution as [37]:

c1 = x− t1−α/2;p−1 s√
p

c2 = x+ t1−α/2;p−1
s√
p

Where α = 0.05 (95%); s is the standard deviation of the xi measurements; and
t1−α/2;p−1 is defined such that a random variable T , which follows the Student’s t-
distribution with p−1 degrees of freedom, obeys Pr[T ≤ t1−α/2;p−1] = 1−α/2. In
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the subsequent figures, we show the mean of the confidence interval plus the width
of the confidence interval relative to the mean (bar whiskers). If two confidence
intervals do not overlap, we can conclude that there is a statistically significant
difference with a 95% (1-α) probability [35].

In the start-up methodology, the xi measurements represent the execution time of
the whole process. Therefore, this evaluation method includes the execution time of
class loading and instrumentation, helping to analyze its influence on short-running
applications. In contrast, the steady-state methodology only considers the execution
time of the benchmark, not the whole process. The steady-state methodology comprises
the following four steps:

1. Each application (program) is executed p times (p = 30), and each execution per-
forms at least k (k = 10) different iterations of benchmark invocations, measuring
each invocation separately. We refer xij as the measurement of the jth benchmark
iteration of the ith application execution.

2. For each i invocation of the benchmark, we determine the si iteration where
steady-state performance is reached. The execution reaches this state when the
coefficient of variation (CoV , defined as the standard deviation divided by the
mean) of the last k iterations (from si−k+1 to si) falls below a threshold (2%).
To avoid an influence of the previous benchmark execution, a full heap garbage col-
lection is done before performing every benchmark invocation. Garbage collection
may still occur at benchmark execution, and it is included in the measurement.
However, this method reduces the non-determinism across multiple invocations
due to garbage collection kicking in at different times across different executions.

3. For each application execution, we compute the xi mean of the k benchmark
iterations under steady state:

xi =

si∑
j=si−k+1

xij

k

4. Finally, we compute the confidence interval for a given confidence level (95%)
across the computed means from the different application invocations using the
Student’s t-statistic described above. The overall mean is computed as x =∑p

i=1 xi/p. The confidence interval is computer over the xi measurements.

5.1.4. Data measurement

To measure execution time of each benchmark invocation (steady-state methodol-
ogy), we instrument the applications with code that registers the value of high-precision
time counters provided by the Windows operating system. This instrumentation calls
the native function QueryPerformanceCounter of the kernel32.dll library. This func-
tion returns the execution time measured by the operating system Performance and
Reliability Monitor [38]. We measure the difference between the beginning and the end
of each benchmark invocation to obtain the execution time of each benchmark run.
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Figure 9: Start-up execution times for the micro-benchmark, relative to Java (whiskers represent the
95% confidence interval).

Memory consumption is measured following the start-up methodology, determining
the memory used by the whole process. For that purpose, we use the maximum size of
working set memory employed by the process since it was started (the PeakWorkingSet
property) [39]. The working set of a process is the set of memory pages currently visible
to the process in physical RAM memory. The PeakWorkingSet is measured with explicit
calls to the services of the Windows Management Instrumentation infrastructure [40].

All the tests were carried out on a 3.6 GHz Intel I7 4790 system with 16 GB of RAM
running an updated 64-bit version of Windows 10.0.14393 Professional. We used Java 8
update 121 for Windows 64 bits. The benchmarks were executed after system reboot,
removing the extraneous load, and waiting for the operating system to be loaded (until
the CPU usage falls below 2% and remains at this level for 30 seconds).

If the P1 and P2 programs run the same benchmark in T and 2.5× T milliseconds,
respectively, we say that runtime performance of P1 is 150% (or 2.5 times) higher than
P2, P1 is 150% (or 2.5 times) faster, P2 requires 150% (or 2.5 times) more execution time
than P1, or the performance benefit of P1 compared to P2 is 150% –the same for memory
consumption. To compute average percentages, factors and orders of magnitude, we
use the geometric mean.

5.2. Runtime performance

We start measuring execution time of the method call join point (method execution
in JAsCo). For this purpose, an intercepted method is invoked 10 million times. Its ex-
ecution is measured with before, after and around interceptions. Since we only measure
method invocation, the cost of runtime weaving and unweaving is not considered here.
The objective of this micro-benchmark is to evaluate the efficiency of the technique
used to provide method interception in isolation, so that we can compare our technique
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Figure 10: Start-up and steady-state execution times for the three real applications, relative to Java.

with existing approaches. Afterwards, we measure more realistic workloads with real
applications where the cost of runtime (un)weaving is considered.

Figure 9 shows the execution time of method call interception for the selected run-
time weavers relative to the Java object-oriented implementation (i.e., no aspects). We
only show start-up execution times, because the 10 million invocations make the JVM to
reach a stable state of execution (steady-state results are essentially the same). We can
see how method interception provided by weaveJ is the fastest among all the runtime
weavers, for the three different types of interceptions. On average, JAsCo, JBoss and
Spring require, respectively, 142%, 148% and 179% more execution time than weaveJ.
PROSE is the slowest weaver, requiring 60 times more execution time than our weaver.

The average cost of method interception for weaveJ (i.e., weaveJ vs. Java) is 9.7%;
whereas, for the rest of platforms, this cost is at least 165%. As described in Section 4,
weaveJ implements method interception with a dynamically generated adapter that
receives all the parameters with their specific type (neither reflection nor type casts are
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used). Moreover, the JVM keeps optimizing the code when invokedynamic is used, so
method inlining can achieve a runtime performance similar to the Java implementation.

For JAsCo and JBoss, the average cost of method interception (compared to Java) is
165% and 172%, respectively. They follow the same approach, replacing the component
implementation (with a Java agent) to invoke the aspect method. The parameters
are wrapped in a general type depending on the kind of interception (e.g., Method-

Invocation for method execution, ConstructorInvocation for constructor execution,
etc.). These general types collect the arguments with Object references, which must
be cast to obtain their original value. This causes a significant performance penalty
compared to direct invocation. The additional performance costs imposed by Spring
(206%) and PROSE (65 factors) are produced by the interception technique used: Java
proxy classes and the JVMDI/JVMTI event notification system, respectively.

Figure 10 shows start-up and steady-state execution times for the three real ap-
plications described in Section 5.1.2. In this case, the execution time of weaving and
unweaving is included in the measurements. Again, weaveJ is the fastest runtime weaver
for the three applications in both methodologies. weaveJ only takes 2.6% more execu-
tion time than Java for short-running programs (start-up), and 1.6% for long-running
applications (steady state). This low performance cost is due to the way weaveJ per-
forms aspect weaving (Section 4): it simply searches a CallSite in a hash table and
modifies the associated MethodHandle.

With real applications, JBoss is, on average, the second fastest weaver, consum-
ing 44.3% (start-up) and 27.3% (steady state) more execution time than weaveJ. For
JAsCo, Spring and PROSE, they require, respectively, 48.7%, 168.9% and 288.2% more
execution time than weaveJ for start-up, and 53%, 143.6% and 289% for steady state.
JAsCo and JBoss provide aspect weaving by modifying the implementation of methods
at runtime using a Java agent. Spring and PROSE basically change the dispatching
mechanism to call the method in the aspect instead of the one in the component.

Comparing these results with those for the micro-benchmark, we see that execution
times relative to Java are lower in real applications. This is because method interception
and aspect (un)weaving are only part of the execution time of the real applications;
whereas, in the synthetic micro-benchmark, method interception represents most of the
execution time of the whole program.

Steady-state times are lower than start-up for all the weavers, because the JVM
performs hot-spot dynamic optimizations when it reaches a steady state [41]. Average
improvement in steady state for JAsCo, PROSE and weaveJ are 3.3%, 6.4% and 6.7%,
respectively. Spring and JBoss show 17.7% and 20.9% improvement in the steady-
state methodology. It seems that the weaving technologies used by JBoss and Spring
(Javassist and Java proxy classes, respectively) make it more difficult for the JVM to
reach a steady state.

5.3. Memory consumption

Figure 11 shows the memory consumption increase introduced by the different aspect
weavers. Spring, weaveJ and JBoss consume 0.20%, 0.24% and 0.47% more memory
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Figure 11: Memory consumption relative to Java.

Before After Around Mobile FTP JHotDraw

S
ta
rt
u
p Java 1,325±0.1% 1,324±1.1% 1,283±1.0% 21,313±0.1% 20,123±1.1% 3,547±1.0%

invokedynamic 1,360±0.9% 1,362±1.5% 1,320±0.9% 21,725±1.0% 20,678±1.2% 3,584±0.8%
Increase 2.7% 2.8% 2.9% 1.9% 2.8% 1.0%

S
te
a
d
y Java 1,262±0.2% 1,261±0.7% 1,222±0.6% 20,332±1.0% 19,254±0.7% 3,255±0.6%

invokedynamic 1,289±0.8% 1,292±1.2% 1,248±0.7% 20,602±0.8% 19,665±1.1% 3,265±0.3%
Increase 2.2% 2.4% 2.2% 1.3% 2.1% 0.3%

Table 3: Execution time (milliseconds) of invokedynamic with no aspects woven (± percentages
represent the 95% confidence interval).

than Java. Since the 95% confidence intervals of these three systems overlap, it could
not be concluded that differences are statistically significant [35].

PROSE and JAsCo consume more memory than Java. On average, these weavers
require 7.39% and 10.95% more memory than the object-oriented application.

5.4. Cost of invokedynamic

As mentioned in Section 4, weaveJ replaces eight bytecodes with invokedynamic

when classes are loaded into memory. Particularly, we use VolatileCallSite to allow
the concurrent modification of methods and fields while the application is running. In
this section, we measure the cost of using invokedynamic. We compare the original
Java application with that resulting by replacing the opcodes with invokedynamic.
Therefore, the difference in execution time and memory consumption indicates the cost
of using invokedynamic when no aspects are woven.

Table 3 shows the increase in execution time. For start-up, the average cost of
invokedynamic using VolatileCallSite is 2.2%. This value is reduced to 1.5% when
the JVM reaches a steady state.

Regarding memory consumption (Table 4), average differences are 0.12%. Since the
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Before After Around Mobile FTP JHotDraw

Java 4,454±0.1% 4,470±0.2% 4,491±0.2% 4,476±0.2% 4,488±0.1% 4,351±0.1%
Invokedynamic 4,459±0.2% 4,475±0.1% 4,504±0.1% 4,479±0.1% 4,490±0.1% 4,358±0.1%
Increase 0.11% 0.12% 0.30% 0.06% 0.06% 0.17%

Table 4: Memory consumption (MBs) of invokedynamic with no aspects woven (± percentages rep-
resent the 95% confidence interval).

95% confidence intervals of memory consumption overlap, it cannot be concluded that
differences between Java and invokedynamic are statistically significant [35].

6. Related work

Aspect-Aware Bytecode Combinator (AABC) is a Java implementation of an aspect
weaver using invokedynamic [16]. It is a proof-of-concept prototype to show how before,
after and around method call advice could be implemented with that instruction of
the JVM. Although invokedynamic performs the linkage of methods at runtime, the
aspect weaver does not allow aspect weaving in a precise point of execution; it does
not allow unweaving either. Particular objects (component instances) cannot be woven,
and aspects in AABC are stateless. AABC does not provide the full functionality of a
dynamic weaver, and it is still a work in progress [16].

JooFlux is a prototype that shows how invokedynamic can be used as a means to
provide before and after method call interception (it does not support around) [18].
They implement a Java agent to replace method invocation with invokedynamic, but
it does not support field access interception. Runtime method call interception is done
by using the Java MethodHandle combinators to adapt method signatures (weaveJ
uses VolatileCallSite and dynamic code generation instead). These combinators
provide a generic solution with the same signature for every method: parameters are
passed as an array of Objects, and Object is the only return type. This approach is
less efficient and robust because expensive type casts need to be done [42], causing a
runtime performance cost of between 2.06 and 6.23 factors [18]. JooFlux is not thread
safe, and it currently has runtime errors and memory leaks [43]. Object weaving is
not provided, and aspects cannot have their own state. In addition, adaptation is not
programmatic, and it must be performed through an external JooFlux JMX agent using
tools such as jconsole [43].

JAC (Java Aspect Components) is a Java framework for aspect-oriented program-
ming [44]. Unlike most weavers that are class-based, JAC is object-based. It does not
require any language extension, providing the features as a Java framework. Aspects
can be woven and unwoven at runtime (not programmatically). JAC supports three
types of aspect methods: wrappers providing around interception of methods and con-
structors; role methods to add new functionality; and exception handlers. Its design is
based on method wrappers and wrapping controllers that resolve aspect composition,
contextual operations and wrapping chains at runtime, causing performance issues [44].
Aspects must extend the Wrapper class, and they can define their own state.
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The invokedynamic JVM opcode has been used in the implementation of other run-
time adaptable systems. Appeltauer et al. built a prototype to support layered method
dispatch in context-oriented programming [17]. They compared the performance re-
sults with their previous version, obtaining promising results [17]. The Java language
is modified to define layers in order to provide before, after and around interception of
methods.

Conde and Ortin [15] developed the Jindy library that allows using invokedynamic

from any language for the Java platform. This library was used to optimize different
reflective applications and two dynamic language implementations [45]. Dynamate is
a framework that uses invokedynamic to support different types of method dispatch,
such as multiple dispatch (multi-methods) and the late binding dispatch implemented
by dynamic languages [46]. Lagartos et al. use invokedynamic to provide structural
intercession and code generation services for the Java platform [47].

JBoss AOP is an aspect-oriented framework for Java, highly integrated with the
JBoss application server [27]. It provides both static and dynamic weaving with a rich
set of join points. For dynamic weaving, class files are instrumented statically or at
load time using Java agents and Javassist [48]. Programmatic aspect weaving cannot
be done within instrumented code. JBoss includes a prepackaged set of aspects such as
caching, asynchronous communication, transactions, security and remoting. It supports
programmatic weaving, and single instances of components and aspects can be woven.
Pointcuts are described in a language similar to AspectJ. Woven aspects cannot been
instantiated explicitly and used as common objects.

Spring AOP is an aspect-oriented component included in the Java Spring frame-
work [28]. Aspect-oriented programming can be used to complement Spring Inversion
of Control with dynamic aspect weaving. Spring AOP uses standard Java dynamic
proxy classes, which allow changing the object that handles a method invocation at
runtime [49]. It provides a limited number of join points, but single component in-
stances can be woven. Aspect classes must implement specific interfaces, and they can
hold their own state. Spring AOP uses the AspectJ pointcut language definition [50].

JAsCo is an aspect-oriented model for Java that provides dynamic weaving of com-
ponents and aspect beans (object weaving is not supported) [51]. Aspect beans describe
behavior that interferes with the execution of a component by using reusable hooks
(special kind of inner classes). Connectors deploy one or more hooks within a specific
context [52]. JAsCo does not provide a direct programmatic support for weaving and
Java programmers should learn its particular language extensions. Aspects can have
state, but they can only be accessed from the connectors (not from the components).
Using Java agents, components are replaced by the woven code, providing significant
runtime performance optimizations [34].

PROSE (PROgrammable extenSions of sErvices) is an infrastructure that supports
dynamic adaptation of applications by providing dynamic aspect weaving at the JVM
level [13]. As weaveJ, PROSE does not define a new aspect language, providing the
weaving services with a Java API [30]. First versions of PROSE used the JVM de-
bugging interface with expensive performance penalties [53]. They later changed the
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implementation with dynamic code replacement, triggering recompilation of methods at
runtime [30]. However, as shown in Table 2, PROSE provides a limited number of join
points. PROSE does not support weaving of single component and aspect instances,
and aspect state cannot be accessed in advice methods [30].

7. Conclusions

We have implemented a dynamic aspect weaver API demonstrating that invoke-

dynamic is a suitable mechanism to provide efficient runtime program adaptation, fol-
lowing an aspect-oriented approach. Its runtime performance is significantly higher than
the weaving techniques used by the existing dynamic weavers, for all the applications
measured. Moreover, the use of aspects does not imply additional memory consump-
tion. This efficiency has been achieved following the next design and implementation
strategies:

– The only algorithm in weaveJ that has a linear time complexity is class instru-
mentation, executed once, when a class is loaded into memory.

– Aspect (un)weaving with invokedynamic does not require reloading the whole
class at runtime and keeps the hotspot optimizations valid.

– The runtime performance cost of invokedynamic compared to the specific JVM
opcode goes from 1.5% (steady state) to 2.2% (start-up).

– Aspect weaving is done concurrently, so application execution is not paused.

– Dynamic aspect (un)weaving has a performance cost, but its implementation has
a constant time complexity in the average case.

– Method interception is implemented with adapters that are generated at runtime
with the specific types of the original method signature, avoiding the expensive
use of Object and reflection.

– The use of a single data structure to associate call sites to methods produces
negligible additional memory consumption.

Besides its efficiency, we have showed how invokedynamic can be used to provide
a wide set of join points, support both class and object weaving, and allow aspects to
have their own state. Runtime weaving and unweaving could be done programmatically
at any point of execution. With invokedynamic, thread-safe aspect weaving can be
provided, changing neither the language nor the virtual machine implementation.

Future work will be focused on adding the method and constructor execution join
points to weaveJ. We also plan to add regular expressions to represent the name of dif-
ferent classes, methods and fields to be woven. We will also include a conflict resolution
mechanism, which includes semantic conflict correction techniques [54].
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The implementation, source code and documentation of weaveJ, and all the bench-
marks and examples used in this article are freely available at
http://www.reflection.uniovi.es/invokedynamic/download/2017/ist
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