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Abstract: Source code authorship attribution or identification is used in the fields of cybersecurity, forensic 
investigations, and intellectual property protection. Code stylometry reveals differences in programming 
styles, such as variable naming conventions, comments, and control structures. Authorship verification, which 
differs from attribution, determines whether two code samples were written by the same author, often using 
code stylometry to distinguish between programmers. In this paper, we explore the benefits of using CLAVE, 
a contrastive learning-based authorship verification model, for Python authorship attribution with minimal 
training data. We develop an attribution system utilizing CLAVE stylometry embeddings and train an SVM 
classifier with just six Python source files per programmer, achieving 0.923 accuracy for 85 programmers, 
outperforming state-of-the-art deep learning models for Python authorship attribution. Our approach enhances 
CLAVE’s performance for authorship attribution by reducing the classification error by 45.4%. Additionally, 
the proposed method requires significantly lower CPU and memory resources than deep learning classifiers, 
making it suitable for resource-constrained environments and enabling rapid retraining when new 
programmers or code samples are introduced. These findings show that CLAVE stylometric representations 
provide an efficient, scalable, and high-performance solution for Python source code authorship attribution. 

1 INTRODUCTION 

Authorship attribution or identification is the task of 
identifying the author of an anonymous document 
based on a set of known authors, using linguistic, 
stylistic, and structural features as distinguishing 
markers, comprising what is also known as 
stylometry (He et al., 2024). This task has been 
widely studied in the context of both literary and 
forensic applications, where determining the origin of 
a text can provide valuable insights into authorship 
disputes, criminal investigations, and intelligence 
analysis.  

When applied to source code, authorship 
attribution is the task of identifying the programmer 
who wrote of a given piece of source code (Kalgutkar 
et al., 2019). Source code authorship attribution 
commonly draws upon concepts from natural 
language processing (NLP), machine learning, and 
software forensics to uncover coding characteristics 
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that differentiate one programmer from another. This 
task has applications in cybersecurity, intellectual 
property protection, and forensic investigations (Ou 
et al., 2023). In cybersecurity, authorship attribution 
is used for tracking malware creators, identifying the 
source of security vulnerabilities, and detecting 
unauthorized code reuse. In legal and intellectual 
property contexts, it aids in verifying ownership 
claims and detecting plagiarism in software 
development. In forensic investigations, code 
authorship attribution can assist law enforcement in 
identifying cybercriminals by analyzing malicious 
scripts, ransomware, or illicit software. 

Figure 1 illustrates how the same program in a 
given language can be written in different styles, 
called code stylometry. The programmer who wrote 
the Python code in the upper part of Figure 1 includes 
type annotations for function parameters and return 
values (Ortin et al., 2022), whereas the one in the 
lower part does not. Additionally, the former provides 
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explicit documentation through comments and selects 
longer, more descriptive identifier names, while the 
latter opts for brevity. Distinct programming styles 
are also evident in the choice of control structures: 
one implementation follows an imperative approach 
using an if-else statement, whereas the other adopts 
a more functional style, utilizing a ternary conditional 
expression. These stylistic choices not only impact 
readability and maintainability but also result in 
differences in code length and structure. Furthermore, 
the first function implementation computes the 
factorial using iteration, while the second one relies 
on recursion, highlighting variations in algorithmic 
preference. 

Code authorship verification aims to determine 
whether two code excerpts were written by the same 
programmer, without having seen the author during 
training (Stamatatos et al., 2023). The key difference 
between authorship verification and authorship 
attribution is that attribution seeks to identify the 
specific author of a code sample from a predefined set 
of candidates, whereas verification focuses on 
determining whether two code samples originate 
from the same author without prior knowledge of 
potential candidates. In this sense, attribution is a 
multi-class classification problem in which the 
authors are known during training, while verification 
is a binary classification task that assesses whether 
two given code samples share the same authorship, 
even when the author was not part of the training data. 

In previous work, we developed CLAVE, a deep 
learning (DL) model for source code authorship 
verification that employs contrastive learning and 
transformer encoders (Álvarez-Fidalgo and Ortin, 
2025). CLAVE is pre-trained on 270,602 Python 
source code files and fine-tuned using code from 
61,956 distinct programmers for Python authorship 
verification. The model achieves an AUC of 0.9782, 
outperforming state-of-the-art source code authorship 
verification systems. Given CLAVE’s strong 
performance in authorship verification, we 

investigate its potential effectiveness for authorship 
attribution when only a few source code files written 
by a predefined set of possible programmers are 
available. To explore this possibility, we develop 
several code authorship attribution systems based on 
CLAVE, other authorship verification systems, and 
Large Language Models (LLMs) encoders pre-
trained on source code. These systems are then 
compared with current DL approaches to assess their 
relative performance. 

Therefore, the main contribution of this paper is 
the development of a source code authorship 
attribution system for the Python programming 
language that, using CLAVE, achieves classification 
performance similar to existing DL approaches with 
just six source files per programmer. Moreover, it 
consumes significantly fewer CPU and memory 
resources than similar DL approaches, enabling rapid 
retraining when a new programmer needs to be 
classified, or additional source code samples are 
included in the dataset. The accuracy of the 
authorship attribution system significantly improves 
CLAVE’s capability to function as a zero-shot 
classifier. 

Derived from the previous contribution, these are 
research questions addressed in this paper: 
§ RQ1. Is CLAVE a suitable system for building 

a source code authorship attribution model? 
§ RQ2. Is there any performance benefit on 

training a classifier from CLAVE embeddings 
to develop an authorship attribution system 
with just a few samples of code for each 
programmer (compared to using the authorship 
verification system)? 

§ RQ3. Is it possible to build an authorship 
attribution system with CLAVE with just six 
samples of code per programmer with a 
classification performance similar to the 
existing deep learning authorship attribution 
systems? 

def calculate_factorial(number: int) -> None:  
    """Calculate the factorial of a given number iteratively."""  
    if number == 0 or number == 1:  
        return 1 # Base case: factorial of 0 or 1 is 1  
    result = 1  
    for i in range(2, number + 1):  
        # Start from 2 since 1 is redundant  
        result *= i  
    return result 

def fact(n): return 1 if n in (0, 1) else n * fact(n - 1) 

Figure 1: Variations in code stylometry for a Python function computing the factorial. 



§ RQ4. Is it possible to (re)train an authorship 
attribution system with CLAVE with 
significantly lower CPU and memory resources 
than deep-learning approaches? 

The rest of this paper is structured as follows. 
Section 2 reviews related work, while Section 3 
provides a summary of CLAVE. Section 4 describes 
the methodology, and Section 5 presents the results. 
Section 6 offers a discussion, and Section 7 concludes 
the paper. 

2 RELATED WORK 

Alsulami et al. (2017) utilize Abstract Syntax Tree 
(AST) information extracted from source code to 
develop a DL model for source code authorship 
attribution. They implement both a Long Short-Term 
Memory (LSTM) and a Bidirectional Long Short-
Term Memory (BiLSTM) model to automatically 
extract relevant features from the AST 
representations of programmers’ source code. Their 
dataset consists of 700 Python files from 70 
programmers across 10 problems, sourced from the 
Google Code Jam annual coding competition. Their 
best model, BiLSTM, achieves an accuracy of 0.96 
when classifying 25 Python programmers and 0.88 
when the number of programmers increases to 70. 

Kurtukova et al. (2020) employ a hybrid neural 
network (HNN) that combines Convolutional Neural 
Networks (CNN) with Bidirectional Gated Recurrent 
Units (BiGRU) to build a code authorship attribution 
system for Python. They conducted different 
experiments with 5, 10, and 20 different programmers 
(10 to 30 files per programmer), achieving a 0.85 
accuracy for 20 programmers. Their approach 
leverages CNNs to capture local structural patterns in 
the code, while BiGRU layers help model long-range 
dependencies. 

DL-CAIS is a Deep Learning-based Code 
Authorship Identification System designed for code 
authorship attribution (Abuhamad et al., 2018). It 
employs a DL architecture that integrates a TF-IDF-
based deep representation with multiple Recurrent 
Neural Network (RNN) layers and fully connected 
layers. This deep representation is then fed into a 
random forest classifier, enhancing scalability for de-
anonymizing authors. The system is trained on the 
entire Google Code Jam dataset from 2008 to 2016, 
as well as real-world code samples from 1,987 public 
repositories on GitHub. DL-CAIS achieves an 
accuracy of 94.38% in identifying 745 C 
programmers. 

Li et al. (2022) create the RoPGen DL model for 
authorship attribution. The key idea is to combine 
data augmentation and gradient augmentation during 
adversarial training to make RoPGen robust against 
adversarial attacks. This approach enhances the 
diversity of training examples, generates meaningful 
perturbations to neural network gradients, and helps 
learn varied representations of coding styles. They 
used four datasets of Java, C, and C++ programs to 
train their model. 

White and Sprague (2021) also present a neural 
network architecture based on a bidirectional LSTM 
that learns stylometric representations of source code. 
The authors train this network using the NT-Xent loss 
function that is part of the SimCLR framework. The 
trained network is evaluated for authorship 
verification by comparing the cosine similarity of the 
representations. It is also used for authorship 
attribution with a support vector machine classifier. 
The network achieves a verification accuracy of 
92.94% on a dataset consisting of C/C++ programs 
from the years 2008 to 2017 of Google Code Jam. 

Hozhabrierdi et al. (2020) propose FDR 
(Feedforward Duplicated Resolver), a method for 
authorship verification that employs a neural network 
originally trained for authorship attribution. The 
network is fed novel features called Variable-
Independent Nested Bigrams that are extracted from 
the abstract syntax tree of each program. The network 
is initially trained to classify source code files into a 
set of known authors. Then, a portion of the trained 
network is repurposed to generate representations 
from source code, which are subsequently compared 
for authorship verification. They achieve an AUC of 
0.96 for the task of predicting whether a pair of 
samples from 43 unknown authors have been written 
by the same person. 

Ou et al. (2023) propose a neural network 
architecture for source code authorship verification 
that combines a bidirectional Long Short-Term 
Memory (LSTM) with a Generative Adversarial 
Network (GAN). This architecture is trained as a 
Siamese network to learn stylometric representations 
of source code, with the GAN ensuring that the 
derived representations do not contain information 
about the functionality of the original source code 
files. These representations are then compared using 
cosine similarity to determine whether a pair of 
source code files were written by the same author. 

Wang et al. (2018) introduce a neural network that 
accepts a set of manually engineered features 
extracted from pairs of programs and outputs the 
probability that the pair was written by the same 
author. These features include both static (extracted 



without running the program) and dynamic (extracted 
after running the program) information, such as run 
time or memory consumption. 

3 CLAVE 

As previously mentioned, the code attribution system 
presented in this article builds upon our prior work, 
CLAVE: Contrastive Learning for Authorship 
Verification with Encoder Representations (Álvarez-
Fidalgo and Ortin 2025). Figure 2 illustrates 
CLAVE’s architecture, which processes source code 
as input and produces a single vector (embedding) 
that encapsulates the stylometric representation of the 
code. Specifically, embeddings of code written by the 
same author are positioned closely in the vector 
space, whereas those from different authors are 
farther apart. 

Since CLAVE generates a single embedding that 
captures the stylometry of the input code, it is well-
suited for code authorship verification. To this end, 
two source code excerpts are passed to CLAVE, 
producing two stylometric embeddings (upper 
section of Figure 2). If the cosine distance (1 − cosine 
similarity) between these embeddings exceeds a 
threshold γ, the excerpts are predicted to be written 

by different authors. Otherwise, they are considered 
to be from the same author. 

The first component of CLAVE (lower section of 
Figure 2) is a SentencePiece tokenizer for Python, 
which converts input source code into a vector 
representation. This vector is then fed into a 6-layer 
Transformer Encoder that outputs a matrix containing 
an embedding for each input token. The Transformer 
Encoder follows the architecture proposed by 
Vaswani et al. (2017) and, similar to BERT (Devlin 
et al., 2019), employs learned positional embeddings 
instead of sinusoidal encoding. Additionally, it uses 
the GELU activation function instead of ReLU, as 
GELU has demonstrated superior performance in 
various language processing tasks (Hendrycks and 
Gimpel, 2023). The encoder is configured with a 
model dimension dmodel = 512, feedforward network 
dimension dff = 2048, and h = 8 attention heads. 

To obtain a single embedding representing the 
entire source code input, the token embedding matrix 
generated by the encoder undergoes pooling, 
producing a fixed-length vector regardless of input 
size. This embedding is then normalized to mitigate 
internal covariate shift, enhancing network stability 
and performance during training. Finally, a fully 
connected layer with a ReLU activation function 
refines the representation, leveraging the information 
encoded in the pooled embedding. The resulting 

 
Figure 2: Architecture of the CLAVE source code authorship verification system. 
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vector serves as the model’s output, encapsulating the 
stylometric characteristics of the source code. 

4 METHODOLOGY 

The proposed system for source code attribution is 
illustrated in Figure 3. The system receives n source 
code files written by p different programmers 
(Section 4.1). Each input file is processed by a code 
authorship verification system—CLAVE and other 
systems are evaluated, as detailed in Section 4.2— to 
generate an embedding that captures the stylometric 
features of the code. The embedding is then 
standardized using a z-score transformation to ensure 
that all features have a mean of zero and a standard 
deviation of one, enhancing the stability and 
performance of subsequent processing steps. Since 
the dimensionality of these embeddings ranges from 
512 to 1024, and our system is designed to operate 
with a limited number of samples, we explore various 
dimensionality reduction techniques (Section 4.4). 
The reduced embeddings are then compiled into a 
dataset, with each instance labeled according to the 
programmer who authored the code. 

Next, we train multiple classifiers (Section 4.3) 
using different numbers of programmers to build 
source code authorship attribution models. The 
trained models are then evaluated and compared 
against existing work, while we also analyze CPU and 
memory usage during training (Section 4.5). 

During inference, the classification model 
operates similarly. The source code from an unknown 
programmer is processed by the code authorship 
verification system, generating an embedding. That 
embedding is subsequently standardized and reduced 
using the optimal dimensionality reduction technique 
(if any) identified during hyperparameter tuning 
(Section 4.4). The resulting vector is then passed to 

the classifier, which predicts the most likely 
programmer label. 

4.1 Dataset 

To train the classifiers, we collected Python source 
code files from different programmers. Since our goal 
is for the classifiers to learn the stylometric features 
of programmers rather than the functionality of the 
code, we selected source code written to solve the 
same problems by different individuals. To this end, 
we used data from the Google Kick Start 
programming competitions held between 2019 and 
2022. 

In these competitions, participants solve seven 
distinct programming problems in their preferred 
language. They can submit multiple versions of their 
solutions, but only the final submission is evaluated. 
We considered only Python code from programmers 
who submitted a non-empty solution for all seven 
tasks, using their final submission in each case. 
Additionally, to ensure no overlap with CLAVE’s 
training data, we excluded files and programmers that 
were used during CLAVE’s training phase. 

The final dataset consists of 85 Python 
programmers, each contributing seven source files, 
resulting in a total of 595 programs. Since all 
programs address the same set of problems, 
classification cannot be based on functionality. The 
dataset is intentionally small to assess whether the 
classifiers can be trained efficiently in terms of time 
and memory while still achieving high classification 
performance with limited samples. 

Figure 4 presents the distribution of non-empty 
lines of code (LoC) across the dataset. As shown, the 
Python programs are relatively short: 80% of the files 
contain 36 LoC or fewer, with a median of 21 and a 
mean of 29.13 LoC. This short length of code per file 
presents an additional challenge for the classifier. 

 
Figure 3: Architecture of the source code authorship attribution system. 
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Figure 4: Distribution of Python non-empty lines of code in 
the dataset. 

4.2 Selected Code Authorship 
Verification Systems 

The first component of the code authorship attribution 
system in Figure 3 is the authorship verification 
system. We assess the state-of-the-art systems 
discussed in Section 2, including CLAVE (Álvarez-
Fidalgo and Ortin, 2025), FDR (Hozhabrierdi et al., 
2020), SCS-GAN (Ou et al, 2023), and the model 
proposed by White and Sprague (2021). All models 
were trained using the same fine-tuning dataset, as 
detailed by Álvarez-Fildago and Ortin (2025). 

Additionally, we leveraged cutting-edge Large 
Language Models (LLMs) specifically trained for 
source code. Based on the recent survey of LLMs for 
code by Zhang et al. (2024), we selected the 
specialized encoder models pre-trained on source 
code: CodeBERT, GraphCodeBERT, SynCoBERT, 
Code-MVP, SCodeR, and CodeSage, excluding 
models unavailable for download (SynCoBERT, 
Code-MVP, and SCodeR). We also included 
StarEncoder, a recent high-performing encoder-based 
LLM for source code that is not covered in Zhang et 
al.’s survey. 

Since these LLMs generate a matrix of token 
embeddings as output, we applied average pooling to 
obtain a single embedding representation of the 
source code, following the same approach we used for 
CLAVE. 

4.3 Classification Models 

Another key component of the code authorship 
attribution system in Figure 3 is the classification 
model. We have selected the following classifiers: 
§ k-Nearest Neighbors (k-NN), a non-

parametric, instance-based learning algorithm 
that classifies a new data point based on the 
most common label among its k nearest 

neighbors in the training set. This approach is 
suitable for our problem, as the authorship 
verification system generates embeddings that 
place files written by the same programmer in 
close proximity. 

§ Support Vector Machines (SVM), which 
identify a hyperplane that best separates classes 
in a high-dimensional space, using maximum 
margin and kernel functions to handle non-
linearity. SVM is well suited for high-
dimensional embeddings, ensuring good 
generalization, and is robust even with small 
datasets, as in our case. 

§ Multiclass Logistic Regression (LR), a linear 
classifier that models the probability of each 
class using the softmax function. It serves as a 
simple yet effective baseline model for 
classification. 

§ Random Forest (RF), an ensemble of decision 
trees where each tree is trained on a random 
subset of features and data. By aggregating 
predictions across multiple trees, Random 
Forest reduces variance and improves 
generalization. It is capable of capturing non-
linear patterns in the data. 

§ Multi-Layer Perceptron (MLP), a fully 
connected feedforward neural network that 
learns non-linear mappings between inputs and 
outputs through multiple layers of neurons. It 
can capture complex stylometric patterns in 
embeddings through non-linear 
transformations and is particularly effective 
when programmers’ styles exhibit hierarchical 
relationships in the embedding space. MLP 
requires tuning multiple hyperparameters 
(Section 4.4). 

§ Extreme Gradient Boosting (XGBoost), an 
ensemble learning method that builds decision 
trees sequentially, where each new tree corrects 
errors from the previous ones to improve 
accuracy. XGBoost is well suited for high-
dimensional embeddings, performs effectively 
on structured data such as stylometric 
embeddings, and includes built-in 
regularization and pruning mechanisms to 
mitigate overfitting. 

4.4 Hyperparameter Search and Model 
Training 

We selected six files per programmer for training 
(510 files) and one file per programmer for testing (85 
files). To identify the best hyperparameters for each 
configuration of the architecture in Figure 3, we 



conducted stratified cross-validation with six folds. 
At each iteration, five programs from each 
programmer were used for training, while the 
remaining program was reserved for validation. This 
ensures that the classifier is evaluated on unseen data 
while maintaining a balanced representation of each 
programmer across the folds. 

The architecture outlined in Figure 3 involves 
several hyperparameters that significantly influence 
the models’ learning and generalization capabilities. 
To identify the best combinations of 
hyperparameters, we performed an exhaustive grid 
search. In each iteration, the model was trained using 
a specific set of hyperparameters, and its performance 
was evaluated based on the accuracy on the sample 
used for validation, as the dataset is perfectly 
balanced. Accuracy is defined as the ratio of correctly 
classified instances to the total number of instances in 
the dataset. 

An important architectural hyperparameter is the 
dimensionality reduction component shown in 
Figure 3, which we treat as an additional 
hyperparameter. We explored the following 
alternatives. We used Principal Component Analysis 
(PCA) to reduce the embedding dimensions while 
retaining 99% and 95% of the explained variance. 
PCA is an effective and computationally efficient 

algorithm when the stylometric features of the code 
embeddings exhibit linear dependencies. Since the 
dataset is labeled, we also experimented with Linear 
Discriminant Analysis (LDA) for projecting the data 
onto a space where the classes are more distinct, thus 
improving the classifier’s discriminative power, 
reducing to programmers-1 dimensions. 
Additionally, we applied Uniform Manifold 
Approximation and Projection (UMAP) for non-
linear dimensionality reduction, testing reductions to 
10, 30, and 50 dimensions. The last option in the 
hyperparameter search is no dimensionality reduction 
algorithm. 

We also searched for different hyperparameters 
for each of the six classification models discussed in 
Section 4.3. The list of parameters searched and the 
best-performing combinations can be found in Ortin 
and Álvarez-Fidalgo (2025). 

To assess the statistical significance of the results, 
we employed bootstrapping with 10,000 repetitions 
to calculate 95% confidence intervals for each metric 
(Noma et al., 2021). This process involved repeatedly 
sampling with replacement from the test set to 
generate multiple resampled datasets. The confidence 
intervals for the average of each metric were then 
computed across all resampled datasets, allowing us 
to evaluate whether there were statistically significant 

 
Figure 5. Accuracy of the source code authorship attribution systems as the number of programmers increases, using the 
best classifier for each verification system and LLM. Shaded areas represent 95% confidence intervals. SVM denotes 
Support Vector Machine, and LR stands for Logistic Regression. 

 



differences between the compared systems (Georges 
et al., 2007). 

4.5 Execution Time and Memory 
Consumption 

Besides its classification performance, one of the 
strengths of the proposed system is its low CPU and 
memory requirements for training a code authorship 
attribution model with data from multiple 
programmers. As discussed in Section 2, the systems 
with the highest performance are typically based on 
DL models, which require considerable time to train 
(Rodriguez-Prieto et al., 2025). 

We measure the execution time of training each 
model with the full training dataset, using the best 
hyperparameters identified. Training is performed 30 
times to compute the average execution time and its 
95% confidence interval, following the methodology 
suggested by Georges et al. (2007). 

For memory consumption, we utilized the psutil 
tool to monitor the memory usage during the training 
process (Rodola, 2025). We measure the maximum  
resident set size throghout the training process 
execution, which represents the non-swapped 
physical memory a process has used (Ortin et al., 
2023). This allows us to quantify the RAM 
consumption and evaluate the efficiency of the 
system in terms of memory resources.  

Hyperparameter search and model training were 
conducted on an Intel Core i9-10900X CPU 

(3.7GHz), with 48 GB of RAM, without the use of a 
GPU, and running an updated 64-bit version of 
Windows 11. We used Python 3.13.2 for model 
training and hyperparameter search, and scikit-learn 
1.6.1 and XGBoost 2.1.4 for model creation. 

5 RESULTS 

Figure 5 presents the accuracies of the source code 
authorship attribution systems trained using the 
method described in Section 4. For each system, the 
classifier with the best performance is shown—all the 
values can be consulted in Ortin and Álvarez-Fidalgo 
(2025). As the number of programmers increases, the 
accuracy of all models tends to decline. The SVM 
classifier with CLAVE embeddings achieves the 
highest accuracy, outperforming all other systems 
significantly—for 85 distinct programmers, its 
accuracy is 22% higher than that of the second-best 
system. The best classifiers for the different systems 
were SVM and LR. 

Figure 6 presents the accuracies of classifiers 
trained with CLAVE embeddings, averaged over 
groups of 12 programmers to smooth fluctuations and 
better visualize trends. SVM achieves the highest 
accuracy, with statistically significant differences 
from the next-best classifier (k-NN)—95% 
confidence intervals do not overlap (Georges et al. 
2007). The third-best system, CLAVE Cosine 
Similarity, assigns authorship based on the closest 

 
Figure 6. Accuracy of the classifiers trained with the CLAVE source code authorship verification systems as the number 
of programmers increases. Shaded areas represent 95% confidence intervals. The CLAVE cosine similarity classifier 
assigns authorship based on the closest embedding to the sample to be predicted, using cosine similarity distance. 

 
 



embedding to the prediction sample using cosine 
similarity distance. All classifiers exhibit a similar 
trend, with accuracy decreasing as the number of 
programmers increases. 

Table 1 presents the execution times for training 
the models with 85 programmers and 6 files per 
programmer, without hyperparameter search, on the 
computer described in Section 4.5. k-NN and SVM 
require the least CPU resources, while XGBoost has 
the highest computational cost. No single authorship 
verification system consistently achieves the shortest 
training times: CLAVE and White & Sprague yield 
the lowest times for two classifiers each, while FDR 
and SCS-GAN do so for one classifier each. 

The memory consumption during model training 
is presented in Table 2. The last row displays the 
memory usage of the base code authorship 
verification model (or base LLM) without a 
classification model, which is a value between 153.86 
and 155.33 MBs. The differences in memory 
consumption across verification systems are less than 
1%, and all the classifiers increase the baseline 
memory requirement. On average, k-NN, SVM, and 
LR require, respectively, 1%, 2.7%, and 2.9% more 
memory than the base verification model. RF 
increases memory usage by 14.6%, while XGBoost 
leads to a 55.9% growth. 

6 DISCUSSION 

The SVM classification algorithm trained with 
CLAVE embeddings has been evaluated as the code 
authorship attribution system with the highest 
performance, outperforming the second-best 
classifier not using CLAVE embeddings by 22% 
(Figure 5). This demonstrates that the stylometry 
vectors generated by CLAVE are well-suited for 
source code attribution tasks (RQ1). 

Figure 5 illustrates the power of LLM encoders 
when trained with large datasets of source code. With 
just six Python files per programmer, LLMs achieve 
higher accuracy for authorship attribution than the 
three state-of-the-art code authorship verification 
systems (Section 2). CLAVE is the only exception, 
outperforming all four LLM models for source code 
evaluated. 

The classification error (1-accuracy) when using 
SVM, compared to using only CLAVE authorship 
verification (selecting the closest embedding to the 
prediction sample using cosine similarity), is reduced 
by 45.4% (Figure 6). This result suggests that training 
a classifier with CLAVE embeddings for authorship 
attribution is preferable to simply using the 
authorship verification system, even when only six 

Table 1: Execution times (in seconds) for training each classifier with 85 programmers and 6 program files per 
programmer (510 files in total), without hyperparameter search. 95% confidence intervals were below 3.5%. 

 CLAVE CodeBERT CodeSage FDR 
Graph 

CodeBERT SCS-GAN 
Star 

Encoder 
White & 
Sprague 

k-NN 0.136 0.119 0.074 0.062 0.158 0.021 0.123 0.043 
Logistic Regression 3.765 5.559 4.863 4.707 5.193 5.134 4.487 4.819 
MLP 0.550 1.002 1.226 18.160 4.965 13.076 6.652 18.813 
Random Forest 1.160 0.632 0.963 0.459 0.870 0.807 1.301 0.495 
SVM 0.156 0.185 0.240 0.133 0.192 0.123 0.200 0.119 
XGBoost 37.402 25.827 75.195 11.384 56.108 9.946 54.237 8.512 
 

Table 2: Memory consumption (in MBs) for training each classifier with 85 programmers and 6 program files per 
programmer (510 files in total), without hyperparameter search. 95% confidence intervals were below 1%. 

 CLAVE CodeBERT CodeSage FDR 
Graph 

CodeBERT SCS-GAN 
Star 

Encoder 
White & 
Sprague 

k-NN 155.20 155.31 159.47 154.65 155.71 155.07 155.66 157.60 
Logistic Regression 158.31 160.74 163.12 155.36 160.98 155.49 160.92 156.32 
MLP 162.01 162.18 167.71 158.07 163.07 157.03 162.86 160.21 
Random Forest 187.10 167.57 167.68 161.38 167.52 178.56 212.83 173.37 
SVM 157.58 163.56 160.89 156.41 159.38 155.74 159.26 156.79 
XGBoost 343.79 212.25 232.49 179.46 294.43 212.15 216.77 234.80 
Verification 154.01 154.66 155.24 153.86 155.33 153.99 154.59 154.09 

 



Python files per programmer are available for training 
(RQ2). However, it is worth noting that this 
improvement is observed with SVM and k-NN 
algorithms for such a small number of samples; the 
other algorithms show similar or worse performance 
than using the CLAVE authorship verification 
system.  

We compare our SVM CLAVE system with state-
of-the-art DL models for Python authorship 
attribution, as discussed in Section 2. Alsulami et al. 
(2017) train a BiLSTM model on 700 Python files 
from 70 different programmers. With more samples 
and fewer programmers than our study, their 
classification error (0.12) is 55.8% higher than ours 
(0.077). Kurtukova et al. (2020) propose another 
authorship attribution model for Python, training a 
hybrid CNN and BiGRU neural network that achieves 
0.85 accuracy for 20 programmers. The rest of the 
systems discussed in Section 2 use C, C++, or Java 
code. These results show that the SVM CLAVE 
authorship attribution system for Python provides 
competitive performance when compared to existing 
DL models (RQ3). 

The design of our model facilitates better 
generalization than DL authorship attribution models. 
By utilizing source code embeddings derived from a 
one-shot verification system, our approach captures 
deeper stylistic and structural patterns, avoiding 
overfitting to dataset-specific artifacts. Unlike end-to-
end DL classifiers, which require large labeled 
datasets for each author and often struggle with 
unseen authors (He et al., 2024), our model projects 
code into a structured embedding space where similar 
authorial styles naturally cluster. This design enables 
effective classification without the need for extensive 
retraining, enhancing adaptability to new authors and 
improving robustness against adversarial 
modifications (Abuhamad et al., 2023). 

The last research question concerns the CPU and 
memory resources required to train the CLAVE 
authorship attribution system. Training the model 
with the entire dataset took 156 milliseconds and 
consumed 157.6 MB on the computer described in 
Section 4.5, with no GPU. These resource 
requirements are significantly lower than those of 
deep learning-based authorship attribution methods, 
which often demand several gigabytes of memory and 
much longer training times (RQ4). This efficiency 
highlights CLAVE’s suitability for resource-
constrained environments, enabling rapid model 
updates and deployment on standard computing 
hardware.  

7 CONCLUSIONS 

We show how a contrastive learning-based 
authorship verification model (CLAVE) can be 
leveraged for source code authorship attribution, 
achieving high classification performance with 
minimal training data, while requiring significantly 
fewer computational resources than DL-based 
approaches. The SVM model, trained with just six 
source files per programmer, achieves an accuracy of 
0.923 for 85 programmers, outperforming state-of-
the-art systems evaluated using the same 
methodology. Additionally, the SVM-based 
authorship attribution system offers a substantial 
advantage for classification over CLAVE’s 
verification system, reducing classification error by 
45.4%. Our system obtains higher performance with 
fewer training examples than the existing DL-based 
approaches for Python authorship attribution. 

A key strength of our approach is its 
computational efficiency, which is significantly 
higher than that of deep learning-based methods. 
With a training time of only 156 milliseconds and 
memory consumption of 157.6 MB, it enables rapid 
retraining and deployment on standard computing 
hardware. These findings suggest that CLAVE’s 
stylometric representations provide a scalable and 
efficient solution for source code authorship 
attribution, even in scenarios where only a few code 
samples are available. 

Future work will focus on extending CLAVE-
based authorship attribution to other programming 
languages and evaluating its performance on more 
diverse datasets to assess its generalizability across 
different coding styles. Additionally, we plan to 
analyze the model’s robustness against adversarial 
attacks, such as code obfuscation or style imitation, 
and explore strategies to enhance its reliability for 
security and forensic applications. 

All the source code used in this article, the dataset 
employed to train the models, the CLAVE source 
code and binary models, the performance results 
obtained during model evaluation, the best 
hyperparameters found for each model, and the CPU 
and memory measurement data are available for 
download at  
https://www.reflection.uniovi.es/bigcode/download/
2025/icsoft2025. 

https://www.reflection.uniovi.es/bigcode/download/2025/icsoft2025/
https://www.reflection.uniovi.es/bigcode/download/2025/icsoft2025/
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