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Abstract

Open-source code repositories are a valuable asset to creating different kinds of tools
and services, utilizing machine learning and probabilistic reasoning. Syntactic models
process Abstract Syntax Trees (AST) of source code to build systems capable of pre-
dicting different software properties. The main difficulty of building such models comes
from the heterogeneous and compound structures of ASTs, and that traditional ma-
chine learning algorithms require instances to be represented as n-dimensional vectors
rather than trees. In this article, we propose a new approach to classify ASTs using
traditional supervised-learning algorithms, where a feature learning process selects the
most representative syntax patterns for the child subtrees of different syntax constructs.
Those syntax patterns are used to enrich the context information of each AST, allowing
the classification of compound heterogeneous tree structures. The proposed approach
is applied to the problem of labeling the expertise level of Java programmers. The
system is able to label expert and novice programs with an average accuracy of 99.6%.
Moreover, other code fragments such as types, fields, methods, statements and expres-
sions could also be classified, with average accuracies of 99.5%, 91.4%, 95.2%, 88.3%
and 78.1%, respectively.

Keywords: Big code, machine learning, syntax patterns, abstract syntax trees,
programmer expertise, decision trees, big data

1. Introduction

Big data is aimed at extracting value from large datasets, creating predictive mod-
els and reports, visualizing and describing data, and finding relationships between
variables. Big data is being used in many different fields such as medicine, finance,
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healthcare, education, social networks and genomics. Considering programs as data,
the existing open-source code repositories (GitHub, SourceForge, BitBucket and Code-
Plex) provide massive codebases to be used in the creation of programming tools and
services to improve software development, making use of machine learning and prob-
abilistic reasoning [1, 2]. This research area has been termed “big code”, due to its
similarity with big data and the use of source code [3].

In the big code area, existing source-code corpora have already been used to create
different systems such as deobfuscators [1], statistical machine translation [4], security
vulnerability detection [5] and decompilation [6, 7]. Probabilistic models are built with
machine learning and natural language processing techniques to exploit the abundance
of patterns in source code. Three categories of models have been identified, based on
the way they represent the structure of programs [8]: token-level models, that represent
code as a sequence of tokens (terminal symbols in the language); syntactic models, that
represent code as a trees (abstract syntax trees or ASTs); and semantic models, that
use additional graph structures (e.g., control-flow graphs and data-dependency graphs).

One of the challenges of big code is to classify and score the level of programming
expertise of developers, by analyzing the source code they write [9]. Then, new tools and
IDEs1 to teach programming can be developed. Such tools would provide different hints
to programmers depending on their level of expertise. A novice Java programmer could
be instructed to use inheritance and polymorphism; for average developers, functional
idioms using lambda expressions could be introduced [10]; and advanced patterns to
avoid performance bottlenecks or security vulnerabilities could be advised to expert
programmers [11].

A system capable of classifying programmers by their expertise level can also be
used to analyze the recurrent idioms written by expert programmers. Such idioms
could be published and used to improve the skills of average programmers. Likewise,
programming lecturers can identify the recurrent programming patterns used by begin-
ners, explaining how they could be improved with better alternatives.

A model that scores the expertise level of programmers can be used to check the
improvement of student’s programing skills during a programming course. The model
would identify those students that do not obtain the expected level of programming
expertise, so lecturers could help them at the earliest. It would also identify those who
have better programming skills, so they could be motivated with additional activities.

The scoring model could also be used by an Intelligent Tutoring System (ITS)
that considers how the student evolves. If the student score increases, more advanced
programming constructs will be taught. If the score stays the same, the ITS will offer
new activities to strengthen the new language construct taught. Finally, if the score
drops, the system will revisit some language constructs formerly explained. In this
case, the language construct to be revisited would depend on the idioms coded by the
student.

1The classifier could also be included in existing IDEs such as Eclipse, IntelliJ and NetBeans.
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Figure 1: Program representation as heterogeneous compound syntax trees.

1.1. Requirements

In this work, we face the challenge of building syntactic models to classify and score
the programming level of expertise of Java developers. What follows are the main
requirements we must fulfill.

Different levels of syntax constructs

When classifying programmers, different fragments of their code could be analyzed.
Therefore, a classifier must consider different levels of syntax constructs, such as ex-
pressions, statements, methods, fields, types (classes, interfaces and enumerations) and
whole programs (Figure 1). A whole program will give the classifier more information
to label the developer, but a useful tool should give hints to the programmer when one
single statement, method or even expression is typed. Therefore, a programmer classi-
fier should be constructed with different models that classify different levels of syntax
constructs (expressions, statements, methods, fields, types and whole programs).

Heterogeneous compound structures

Figure 1 shows that the syntax of the different language constructs are heteroge-
neous. For example, the syntax of methods is different to the syntax of statements and
expressions. Moreover, many program constructs are composed of other program con-
structs. For example, the assignment statement “temp = this.m(a)/this.myField;”
comprises the two expressions on the left- and right-hand side of the assignment oper-
ator (the right-hand side is also subdivided in other subexpressions). Likewise, object-
oriented programs are composed of a set of types, types may comprise methods and
fields, methods contain statements, and statements and fields are commonly built using
expressions. Therefore, a Java syntax classifier should be able to label those heteroge-
neous compound AST structures.

Interpretable white-box models

As mentioned, the syntax patterns used to classify expert and novice programmer
are valuable information. We described how they could be used to assist lecturers in
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a programming course, and to create Intelligent Tutoring Systems. Additionally, we
propose to use the extracted patterns in a feature learning process (Section 3) to build
classifiers with different kinds of syntax constructs.

Scalability

Model construction must be scalable, since we follow the big code philosophy of
using massive datasets. It must allow the construction of classifiers from millions of
instances. For example, just the dataset we used to build the expressions classifier holds
13,498,005 instances (see Section 4.1).

Models from trees

An important challenge of syntax pattern classification is to build predictive models
from trees, since most supervised classification algorithms require instances (individuals
or rows) to be represented as fixed size n-dimensional vectors [12]. While there are stan-
dard techniques to compute such vectors for documents, images and sound, there are no
similarly standard representations for programs [5]. There exist alternative structured
prediction methods such as Graph Neural Networks (GNNs) and Conditional Random
Fields (CRFs) —discussed in Section 2—, but they unfortunately seem to suffer suffi-
ciently high computation and space costs to be used with massive codebases [13].

1.2. Contribution

In this work, we use decision trees (DTs) as the supervised learning algorithm, be-
cause DTs create interpretable white-box models, and perform well with large datasets [14].
They are also able to handle both numerical and categorical data.

In order to build DTs, we tabularize the ASTs of the input programs. We rep-
resent as features the main syntactic characteristics of each kind of node (expression,
statement, method, field, type and program), including its category (e.g., arithmetic
operation, method invocation, field access, etc.), and multiple information about their
context (data about its parent and child nodes, its role in the enclosing node, its depth
and height, etc.).

We create different datasets for each kind of node. Then, we build different ho-
mogeneous DT models that classify each kind of syntax construct (e.g., expressions,
statements, methods, etc.). Finally, we take the patterns used by the homogeneous
models to build new classifiers of compound heterogeneous syntax constructs (e.g., a
method classifier that also considers the syntax patterns of the statements and expres-
sions written within the method).

The main contributions of this paper are:

1. A new feature learning approach to classify great amounts of trees made up of
compound heterogeneous structures.

2. A system to classify the programming expertise level of Java developers by analyz-
ing the syntax constructs of their code. The system can also be used to measure
the probability of a code fragment to be written by an expert or beginner.
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3. The identification of Java syntax patterns used by both expert and novice pro-
grammers.

The rest of this paper is structured as follows. Next section discusses the related
work, and Section 3 details the proposed system. Section 4 evaluates our system with
different experiments, and the conclusions and future work are presented in Section 5.

2. Related Work

We discuss the work related to source code classification with syntactic models,
according to its objective and the method used.

2.1. Classification of programmers by their expertise level

In the field of programmer classification, Lee et al. used biometric sensors data
to detect the programmer’s level of expertise [15]. In particular, they used a 16-
channel-amplifier V-amp to collect electroencephalographic data, and a SMI RED-mx
eye-tracker to classify eye movement according to the velocity of shifts in the program-
mer eye direction. They conducted a study with 38 expert and novice programmers,
investigating how well electroencephalography and an eye-tracker data can be utilized
to classify novice and expert programmers in two kinds of programming tasks (easy and
difficult). By using Support Vector Machines, they built three models: one using the
eye-tracker, another one with the electroencephalographic sensors, and the third one
with both data sources. The F1 performances of the three models to classify expert
programmers were, respectively, 90.3%, 93.1% and 97%.

Samy S. Abu-Naser built an artificial neural network to classify the academic per-
formance of students in linear programming [9]. Naser used the Linear Programming
Intelligent Tutoring System (LP-ITS), created in the Al-Azhar University to teach linear
programming. LP-ITS automatically generates programming problems for the students
to solve [16]. The system stores information about the student interaction with LP-
ITS, that is used to train the model. They used the log files of 67 learners, with 2144
program submissions; half for training and half for testing. A multilayer perceptron
neural network (9 nodes in the input layer, 5 for the hidden one, and one node in the
output layer) with sigmoid activation function was used to classify student’s level of
expertise. The average accuracy obtained was 92%.

2.2. Clone detection

Machine learning has been used to detect syntax patterns in source code for different
purposes. One of the most active fields is clone detection, which is aimed at finding
similarities between source-code fragments. Clone detection is used to identify repeated
(not reused) code for software maintenance, program understanding, code refactoring,
plagiarism detection and program compaction [17]. There exist different approaches to
detect clones: text-based techniques, lexical, syntactic and semantic approaches, and
hybrid methods [18].
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The syntactic approaches to detect clones use parsers to convert source code into
parse trees or ASTs, which are then processed using tree-matching or structural met-
rics [18]. Tree-matching techniques compare tree structures; whereas metrics-based
systems gather metrics for code fragments and compare the metrics vectors, rather
than the AST, to perform the classification [19].

CloneDr is a tree-matching clone detector that compares trees with the same struc-
ture [20]. To that aim, they propose three algorithms: one to detect sub-tree clones;
another one for variable-size sequences of sub-trees; and the third algorithm to general-
ize combinations of other clones [21]. A combination of those three algorithms is used
to compare tree structures. The tool was applied to a production software of more than
400K lines of code written in C, detecting average levels of source code duplication of
28%.

Wahler et al. find exact and parameterized code fragments, defining a method
based on the concept of frequent itemsets, which works with an XML representation of
ASTs [22]. In data mining, frequent itemsets are used to illustrate relationships within
large amounts of data. For ASTs, frequent itemsets represent sequences of consecutive
statements constituting source code clones. The implementation uses an XML database
plus a link structure and a hash table to speed up the data access. It took 60 minutes
to detect clones in the JDK source, and 90 minutes for the DisLog Developer’s Kit
(DDK) of SWI-Prolog [22].

Evans et al. built Asta, a clone detection system that works with so-called structural
abstractions (i.e., AST subtrees) [17]. Programs are parsed, and their ASTs are stored
as XML documents. Subtrees are represented as patterns that are matched with other
subtrees to detect potential clones. Those patterns are sometimes defined with holes,
which are wildcards that allow any subtree match. This feature allows Asta to detect
clones with variations in arbitrary subtrees. In a variety of 425K lines of code of Java
and 16K lines of C#, 20-50% of the clones found by Asta were structural, and thus
beyond lexical methods [17]. Its C++ implementation took 10 minutes to analyze all
the code.

Koschke et al. defines a clone detection system based on abstract trees, but with
linear time and space, similar to lexical alternatives [23]. The proposed algorithm parses
the input program, creates the AST, serializes the trees, applies suffix tree detection,
and decomposes the resulting token sequences into syntactic structures. Suffix tree
comparison is linear in space and time with respect to their length. The proposed
system, cscope, was tested with the Bellon benchmark, providing accuracies similar to
syntactic approaches, with runtime performance of lexical ones [23].

The tool Deckard computes certain characteristic vectors to approximate the
structure of ASTs in a Euclidean space [24]. Deckard identifies relevant and irrelevant
nodes in the AST for clone detection. Characteristic vectors are created by counting
the number occurrences of relevant nodes in a subtree. Then, Deckard detects similar
clones by computing locality sensitive hashing, which clusters similar vectors using the
Euclidean distance metric. Deckard was used to find clones in the open JDK and
Linux kernel, performing better than CloneDr in accuracy and scalability [24].
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2.3. Other scenarios of syntactic classifiers

Ahmad Taherkhani used decision tree classifiers to recognize sorting algorithms from
Java code[25]. Algorithms are first converted into vectors of characteristics, including
syntactic features such as the number of expressions, tokens, loops, algorithm length,
and roles of variables. Then, a C4.5 decision tree classifier is built. The model is trained
with five different types of sorting algorithms: Quicksort, Mergesort, Insertion sort,
Selection sort and Bubble sort. Taherkhani collected 209 programs for the five sorting
algorithms. The programs were gathered from various textbooks on data structures and
algorithms, together with course materials available on the Web. A leave-one-out cross-
validation technique was used to test the model. The average classification accuracy of
the C4.5 model was 98.1%.

Nate is a tool to localize novice type errors in OCaml programs [12]. They convert
the ASTs of source programs into Bags-of-Abstracted-Terms (BOATs), where each
subtree is abstracted as a feature vector, comprising the numeric values returned by
feature functions applied to the tree. Nate is trained with a large corpus of ill-typed
programs and their “fixed” version, creating different models with distinct supervised-
learning techniques. The resulting models take an ill-typed program and produces a list
of potential blame assignments ranked by likelihood. One important feature of Nate
is that it just works with expression nodes in the AST. Thus, it does not support error
prediction of any syntax construct different to expressions (e.g., statements, functions
or data structures). Nate is able to predict correctly the exact sub-expression that
must be changed 72% of the time.

There are some other scenarios where machine learning has been used to predict
properties of programs by using syntax (and sometimes semantic) information of their
source code. Some examples are vulnerabilities detection in source code [5], source-code
decompilation [6, 26], code completion [27], and code idiom mining [28].

2.4. Structured methods

Alternative structured methods such as Graph Neural Networks operate on graph
structures to provide node and graph classification [29]. In the context of program
classification, Lu et al. conducted an experiment comparing Tree-Based Convolutional
Neural Networks (TBCNN), Gated Graph Neural Networks (GGNN) and Gated Graph
Attention Neural Networks (GGANN) [30]. They took C++ code from students, aimed
at solving different programming tasks. They evaluated the performance of the three
abovementioned neural networks to classify source code into two predefined categories
(five similar programming tasks in each group). They created a graph representation
that integrated ASTs with the semantic information of Function Call Graphs (FCG)
and Data Flow Graphs (DFG). When only syntactic information (i.e., ASTs) was used
in the classification, the average accuracies of TBCNN, GGNN and GGANN were,
respectively, 94.1%, 96.4% and 97.1%. When semantic information was added, the
performance improvement of the classifiers was not significant [30].

Syntax trees were also used with structured prediction methods such as Conditional
Random Fields [1]. CRF is a probabilistic framework for labeling and segmenting
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structured data, such as sequences, trees and graphs [31]. CRFs define conditional
probability distributions over label sequences, given particular observation sequences.
CRFs was used to implement JSNice, a tool that predicts names of identifiers and type
annotations of variables in obfuscated JavaScript code [1]. By analyzing the usage of
variables in a function body, JSNice is able to label the type of the variable (if it is
built-in) and a suitable name. In the evaluation of JSNice, it predicted correct names
for 63% of the identifiers, and its type annotation predictions were correct in 81% of
the cases [1]. A limitation of CRF is that it suffers high computation and space costs
to be used with massive codebases [32].

Relational learning is another technique already identified as mechanism to under-
take graph mining [33]. Inductive Logic Programming (ILP) is a relational machine
learning technique that can be used to classify graphs. Applied to programming lan-
guage analysis, Sivaraman et al. implemented Alice, an ILP tool to search source
code by specifying syntax constructs [34]. The syntax of the language to be queried is
specified as logic facts, representing tree structures. Users define their queries by anno-
tating pieces of code with similar structure to the one to be searched. After executing
the query, irrelevant examples could be labeled by the user. Then, Alice learns the
query that includes the program structure, by using ILP. When labeling two positive
examples and three negative ones, Alice successfully identifies similar code locations
with 93% precision and 96% recall in 2.7 search iterations [34]. Some other performance
experiments have indicated that ILP does not seem to scale well with big data [35].

Tree kernels measure similarity between two trees in terms of their sub-structures [36].
Besides natural language processing, tree kernels have been used for source-code plagia-
rism detection [37]. WASTK is a tool that builds the ASTs of two programs and gets
the similarity between them by computing the tree kernels of both trees. In WASTK,
Term Frequency-Inverse Document Frequency (TF-IDF) weights are assigned to each
node to avoid the misjudgment caused by common code snippets. In the experiment
conducted by Deqiang Fu et al., the average performance of WASTK was 48.32%, sig-
nificantly higher than the JPlag and Sim software plagiarism tools [37]. Training time
of tree kernels is quadratic in the size of the trees [38].

3. System Architecture

Figure 2 shows the architecture of our system, and Algorithm 1 details how it
works. We first provide a brief high-level description of the modules in the architecture.
Forthcoming subsections detail the behavior of each module.

The input of the system is a database of labeled Java programs (expert or beginner);
the output is a collection of heterogeneous decision tree models to classify programmers,

2The pseudocode in Algorithm 1 uses the following functions: classificationRules, described in
Section 3.2; select and simplify, depicted in Section 3.3; potentialChildNodesOf, which returns the
syntax constructs that may occur as subtrees of another given syntax construct; and columns, which
returns the syntax pattern columns in a given dataset.
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Input : sourceCodeDB : collection of labeled Java programs.
Output: heteroDT : decision tree models, heteroPatterns: syntax patterns.

// Homogeneous model construction

foreach syntaxConstr in {expression, statement, method, field, type, program} do
// Homogeneous dataset construction

Define the structure of homoDSsyntaxConstr dataset, including its syntactic category and
information about its context

foreach AST in sourceCodeDB do
foreach node of type syntaxConstr in AST do

Include the node features and context information as a record (instance) in
homoDSsyntaxConstr dataset

end

end
// Homogeneous model construction

Build a homoDTsyntaxConstr DT model using the homoDSsyntaxConstr dataset
// Homogeneous syntax pattern extraction

homoPatternssyntaxConstr ← classificationRules(homoDTsyntaxConstr)
// Syntax pattern selection and simplification

homoPatternssyntaxConstr ← select(homoPatternssyntaxConstr)
homoPatternssyntaxConstr ← simplify(homoPatternssyntaxConstr)

end
// Heterogeneous model construction

foreach syntaxConstr in {expression, statement, method, field, type, program} do
// Heterogeneous dataset construction

Define the structure of heteroDSsyntaxConstr dataset, including all the features
(columns) of homoDSsyntaxConstr

foreach childSyntaxConstr in potentialChildNodeOf(syntaxConstr) do
Add to the structure of heteroDSsyntaxConstr dataset one feature (column) per

syntax pattern in homoPatternschildSyntaxConstr

end
Copy all the values from homoDSsyntaxConstr dataset to heteroDSsyntaxConstr

foreach instance in heteroDSsyntaxConstr do
foreach syntaxPattern in columns(heteroDSsyntaxConstr) do

Update the (instance, syntaxPattern) cell in heteroDSsyntaxConstr with the
percentage of occurrences of syntaxPattern in the subASTs of the AST
represented by instance

end

end
// Heterogeneous model construction

Build a heteroDTsyntaxConstr DT model using the heteroDSsyntaxConstr dataset
// Heterogeneous syntax pattern extraction

heteroPatternssyntaxConstr ← classificationRules(heteroDTsyntaxConstr)
end

Algorithm 1: Pseudocode describing the proposed method2.
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plus the syntax patterns used by the classifier. Such patterns describe common idioms
used by experts and beginners.

First, we create six homogeneous datasets with different features for each syntax
construct: expressions, statements, methods, fields, types and programs. For each
node in the ASTs, we store its features in a homogeneous dataset defined for that
syntax construct. Such features include its syntactic category and context information
(see Section 3.1). Then, for each syntax construct, we create a DT model capable
of classifying all the different types of AST nodes defined for that syntax construct.
For example, the expression DT model classifies any arithmetic, comparison, logical,
variable, literals and cast expressions.

The next step is to obtain the syntax patterns from the homogeneous DT models
(Section 3.2). DTs are traversed to obtain the decision rules used by the classifiers. The
homogeneous syntax patterns are the antecedent parts of such decision rules. Those
patterns are then reduced in number, and simplified to make them more readable
(Section 3.3).

Once the homogeneous syntax patterns are reduced in number and simplified, we
create the heterogeneous models (Section 3.4). As mentioned, AST structures are het-
erogeneous (e.g., programs, types, methods, fields, etc.) and some of them comprise
other ones (e.g., programs contain types, and types contain methods and fields). There-
fore, each heterogeneous dataset for one syntax construct (e.g., program) is built with
its homogeneous dataset, plus all the syntax patterns of the subASTs it may contain
(e.g., methods, fields, etc.). In this way, heterogeneous classifiers utilize not only their
homogeneous features, but also the most relevant syntax patterns of their subASTs.

The last step of the process involves extracting the heterogeneous syntax patterns
from the heterogeneous DT models (Section 3.5), the same way as we did with the
homogeneous ones. The extracted patterns represent common Java idioms used by
experts and beginners.

3.1. Homogeneous datasets and models construction

As mentioned, classical supervised learning algorithms work on feature vectors : n-
dimensional vectors of features that represent each instance (i.e., each individual in a
given problem). Our approach is to translate homogeneous syntax constructs (expres-
sions, statements, etc.) into vectors of features. For each syntax construct, we define
a feature abstraction set of functions f that map each AST node to a numeric value
encoding one property [12]. Given the set of feature abstractions f1, . . . , fn, we can
represent a given AST t as the feature vector [f1(t), . . . , fn(t)]. In this way, feature ab-
straction functions represent a parameterizable mechanism to translate ASTs as feature
vectors.

The first feature abstraction function we define is the syntactic category of each
node in the AST. Figure 3 shows the syntactic category feature abstraction for Java
expressions (we use the ANTLR meta-language notation [39]). This feature simply
denotes the kind of expression an AST node represents (its syntactic category).
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Production Syntactic category

expression → expression (‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’) expression Arithmetic (binary)
| expression (‘>’ | ‘>=’ | ‘<’ | ‘<=’ | ‘==’ | ‘!=’) expression Comparison
| expression (‘&&’ | ‘||’) expression Logic (binary)
| expression (‘&’ | ‘|’ | ‘ˆ’) expression Bitwise (binary)
| expression ‘instanceof’ type Instance of
| expression (‘=’ | ‘+=’ | ‘-=’ | . . .) expression Assignment
| expression (‘>>’ | ‘<<’ | ‘>>>’) expression Shift
| expression ‘?’ expression ‘:’ expression Conditional
| (‘++’ | ‘--’) expression Inc-Dec prefix
| expression (‘++’ | ‘--’) Inc-Dec postfix
| (‘+’ | ‘-’) expression Arithmetic (unary)
| ‘!’ expression Logic (unary)
| ‘∼’ expression Bitwise (unary)
| ‘(’ type ‘)’ expression Cast
| expression ‘.’ ID Field access
| expression ‘::’ ID Method reference
| expression ‘[’ expression ‘]’ Indexing
| expression ‘(’ (expression (‘,’ expression)*)? ‘)’ Invocation
| lambda parameters ‘->’ lambda body Lambda
| ‘new’ type ‘(’ (expression (‘,’ expression)*)? ‘)’ New object
| ‘new’ type (‘[’ expression ‘]’)+ (‘[’ ‘]’)* New array
| ID Identifier
| INT LITERAL | CHAR LITERAL | . . . Int literal, char literal . . .

Figure 3: Feature abstraction function for the syntactic category of expressions.

Besides its syntactic category, we also store context information of AST nodes.
Each AST node occurs in some surrounding context (e.g., parent and child nodes),
and we want the classifier to make decisions based on such contexts. For example,
object construction using the new operator does not discriminate the level of expertise.
However, our system detects that beginners rarely use such expression to initialize a
final field in a class. Thus, the context of a non-discriminating expression may be
discriminating.

Table 1 includes the context information stored for expressions (Appendix A shows
the features used for the rest of syntax constructs). We use feature abstraction functions
to represent the syntactic categories of its three potential child nodes (if no child exits,
e.g. unary expressions, the feature is assigned zero), together with its parent. We also
store the role that the expression is playing in the parent node. For example, if the
parent is the conditional ternary operator, the current node could be playing the role of
the condition (first child node), the if-true expression (second child node) or the if-false
expression (third child node). As shown in Table 1, we also store the node depth and
height in the AST.

To fill the datasets with the syntactic information taken from the labeled source
code, we modify the Java compiler in OpenJDK. We analyze the Java programs, and
convert the AST structures into the tabular information defined for each syntax con-
struct. Once the homogeneous datasets for the different syntax constructs are built, we
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Name Description

Category Syntactic category of the current node, detailed in Figure 3.
First, second and third child Syntactic category of the corresponding child node.
Parent node Syntactic category of the parent node.
Role Role played by the current node in the structure of its parent

node.
Height Distance (number of edges) from the current node to the

root node in the enclosing type (class, interface or enumer-
ation).

Depth Maximum distance (number of edges) of the longest path
from the current node to a leaf node.

Table 1: Feature abstractions used for expressions.

create the homogeneous DT models.

3.2. Homogeneous syntax pattern extraction

We get the classification rules from the homogeneous decision trees. DTs are tra-
versed with an instance of the Visitor design pattern [40], storing the paths from root
to leaf nodes as classification rules. The antecedents of the classification rules represent
syntax patterns, and the consequent is the outcome of the classification. For example,
one decision rule for expressions is:

if category(node) == assignment and category(first child(node)) == field access
and category(second child(node)) == new object
and role in parent(node) == expression

then expertise level = expert

This rule classifies the example expression “obj1.m(obj2.f = new MyClass())”
as code written by an experimented programmer. For this rule, the syntax pattern
gathered is an assignment that plays the role of an expression (instead of statement),
its left-hand side expression is a field access, and the right-hand side is an object
construction.

3.3. Syntax pattern selection and simplification

The heterogeneous datasets include one feature per homogeneous syntax pattern of
their potential subASTs. This process would produce a huge number of features, since
we expect the number of homogenous patterns to be high. Moreover, the compound
nature of ASTs make the number of features to be even higher. For example, the
heterogeneous features for programs include the syntax patterns of types, methods,
fields, statements and expressions.

13



Our intention is thus to reduce the number of patterns with the minimal reduction of
the accuracy of the classifier, finding a trade-off between these two conflicting variables.
To this end, we consider two measures of syntax patterns: coverage and confidence [41].
Coverage is defined as the relative number of instances that satisfy the pattern (how
frequently the pattern appears in the dataset):

Coverage(pattern) =
occurrences of pattern in dataset

number of instances
(1)

Confidence is a measure for the whole classification rule, not just the antecedent.
The confidence of a rule is an indication of how often a rule has been found to be true:

Confidence(rule) =
instances fulfilling the rule

occurrences of rule antecedent in dataset
(2)

We analyze the influence of these two measures on the accuracy of the classifier.
Then, we discard all those rules that do not involve a significant reduction in the
classifier performance (experimental results are presented in Section 4.3). We also
perform some rule simplifications to make syntax patterns more readable.

3.4. Heterogeneous dataset and model construction

The previous pattern extraction and selection processes undertake automatic fea-
ture learning to build the final heterogeneous compound classifiers. The dataset of
each syntax construct is made up of the selected syntax patterns of their subASTs
(Section 3.3), together with the features of the corresponding homogeneous dataset
(Section 3.1) —see Figure 2 and Algorithm 1. The outcome is a collection of different
datasets that are used to build the final heterogeneous compound models.

In the heterogeneous datasets, we set the value of each syntax pattern to the percent-
age of occurrence of such patterns. For each compound instance (e.g., one statement),
we count the syntax patterns that its child nodes (its subexpressions) fulfill. Then,
the cells for such syntax patterns are filled in with the percentage of occurrence of the
pattern in the AST represented by that instance (statement). In this way, the homoge-
neous features of one syntax construct are enriched with the syntax patterns of its child
subASTs, providing better classification performance. In Figure 2, the homogeneous
program features (FP1, FP2, . . . , FPp) are enriched with all the heterogeneous syntax
patterns that could be found in the program subASTs: types (PT ′1, . . . , PT

′
t′), methods,

fields, statements (PS ′1, . . . , PS
′
s′) and expressions (PE ′1, . . . , PE

′
e′).

From the implementation point of view, much computation time is required to
check whether subtrees in a program fulfill a specific syntax pattern. To optimize this
operation, we convert all the syntax patterns to SQL queries against the homogeneous
datasets in the database. The premises in the pattern are translated to SQL “where”
clauses. Those queries are executed programmatically, and their results are used to fill
in the heterogeneous datasets.
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3.5. Heterogeneous syntax pattern extraction

As with the homogeneous datasets, we traverse the resulting heterogeneous DTs
to obtain the final heterogeneous syntax patterns. Each classification rule obtained
represents a compound syntax pattern for a given programming expertise level. Such
rules are expressed not only with features of the syntax construct to be classified, but
also with syntax patterns for its child nodes.

4. Evaluation

In this section, we evaluate the performance of the proposed system to label Java
programmers according to their expertise level. We first describe the experimental data
(Section 4.1) and environment (Section 4.2). Then, we describe and show the results
of the following experiments within the framework of the proposed system:

1. Syntax pattern selection (Section 4.3). This experiment applies the method for
pattern selection described in Section 3.3 to reduce the number of syntax patterns
taken from different DTs.

2. Heterogeneous AST classification (Section 4.4). Evaluates the accuracy of DTs to
classify heterogeneous ASTs. DTs are compared with the existing related work,
and other common machine-learning approaches.

3. Heterogeneous syntax pattern extraction (Section 4.5). We analyze the final syn-
tax patterns obtained by our system.

4. Scoring the expertise level of programmers (Section 4.6). The heterogeneous
dataset is used to score the programming expertise level of Java developers.

5. Execution time of the proposed method (Section 4.7). We measure the execution
time required for each module of the architecture described in Section 3.

4.1. Experimental data

To build the datasets, we took Java code from different sources and labeled them as
either beginner or expert programmer. For beginners, we gathered code from first year
undergraduate students in a Software Engineering degree at the University of Oviedo.
We took the code they wrote for the assignments in two year-1 programming courses
in academic years 2017/18 and 2018/19. All the code was 100% written by students
from scratch. Overall, we collected 35,309 Java files from 3,884 programs.

For expert programmers, we took the source code of different public Java projects
in GitHub. We selected active projects with the highest number of contributors:
Chromium, LibreOffice, MySQL, OpenJDK and Amazon Web Services. These soft-
ware products are implemented with 43,775 Java files in 137 programs (AWS comprises
133 different projects).

To get the syntactic information (features in the homogeneous dataset) from the
Java code, we modified the implementation of the Java compiler in OpenJDK 12.0.1.
After syntax analysis, we traverse the AST several times using the Visitor design pat-
tern [40]. In those traversals, we compute all the values for the features of the different
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Beginner Expert Total Final

Expressions 4,616,807 8,881,198 13,498,005 9,233,614
Statements 1,304,585 2,292,791 3,597,376 2,609,170
Methods 237,285 370,618 607,903 474,570
Fields 96,175 135,826 232,001 192,350
Types 35,910 58,719 94,629 71,820
Programs 3,884 137 4,021 274

Total 6,294,646 11,739,289 18,033,935 12,581,798

Table 2: Number of AST nodes.

syntax constructs, filling in the values in the homogeneous datasets. Then, we label
each instance with its expertise level.

Table 2 shows the number of AST nodes. To balance data, we removed random
instances from the over-representing class to get the same exact number of instances
for both classes (final column in Table 2).

4.2. Experimental environment

To implement the experiments, we used Python 3.7.2 and scikit-learn 0.21.1. All
the datasets were stored in a PostgreSQL database 11.3. Since PostgreSQL limits the
maximum number of columns to 1600, we modified its open source implementation to
allow 12,800 columns (features). We run all the code in a Dell PowerEdge R530 server
with two Intel Xeon E5-2620 v4 2.1GHz microprocessors (32 cores) with 128GB DDR4
2400MHz RAM memory, running CentOS operating system 7.4-1708 for 64 bits.

DTs were created with the CART algorithm implemented by scikit-learn (Decision-
TreeClassifier) [42]. CART constructs binary trees using the feature and threshold
that yield the largest information gain at each node. This implementation of decision
trees permits the use both categorical and numerical data. We selected the best hyper-
parameters with exhaustive parallel search across common parameter values (Grid-
SearchCV), using stratified randomized 10-fold cross validation (StratifiedShuffle-
Split). For the hyper-parameter to measure the quality of a split, we tried gini and
entropy; for selecting the strategy to choose the split at each node, we tried best and
random.

4.3. Syntax pattern selection

Our source code database of 35,309 Java files generated the six homogeneous datasets
detailed in Table 2. On aggregate, the datasets contain 12.5 million AST nodes (in-
stances). The six homogeneous DT models were created, and syntax patterns were
extracted as explained in Section 3.2. That pattern extraction process produced 45,590
patterns for all the homogeneous models (10,562 for expressions; 28,163 for statements;
4,806 for methods; 336 for fields; 1,702 for types; and 21 for programs). Since this num-
ber poses high dimensionality to build a predictive model [43], we define the mechanism
to reduce the number of syntax patterns described in Section 3.3.
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Figure 4: Classifier accuracy (y-axis) obtained with a percentage of rules (x-axis) with the highest
confidence, coverage, precision and recall. For confidence, it is shown the CoV of the last 10 values
below 2%.

We want to reduce the number of syntax patterns with the minimal reduction of
classifier accuracy. To this aim, we analyze the influence of rule (syntax pattern)
coverage, confidence, precision and recall on the accuracy of the whole DT classifier.
Figure 4 presents the results. For each measure, it shows the accuracy of the classifier (y-
axis) built with n% of the rules (x-axis) with the highest coverage, confidence, precision
and recall. Figure 4 shows how, for all the datasets, coverage was the measure that
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Original rules Rules selected Rule reduction Accuracy loss

Expressions 10,562 422 96,0% 11,1%
Statements 28,163 1,971 93,0% 11,6%
Methods 4,806 384 92,0% 12,3%
Fields 336 27 92,0% 10,6%
Types 1,702 221 87,0% 13,5%
Programs 21 7 65,0% 16,2%

Total 45,590 3,034 93.3% 12.4%

Table 3: Results of pattern selection.

selected the lowest number of patterns with the highest accuracy of the classifier.
Sorting the classification rules by coverage, we have to choose a percentage of rules

(preferably low) with little penalty on the classifier accuracy. To this end, we used the
Coefficient of Variation (CoV), defined as the ratio of the standard deviation to the
mean. We measured the CoV of the classifier accuracy for the last ten percentages of
rules in Figure 4, and selected the first percentage of rules where such CoV is lower
than 2%. As shown in Figure 4, that value approximates the elbow value in all the
coverage curves, representing a good trade-off between syntax pattern pruning and
classifier accuracy.

Table 3 details the results of pattern selection. Out of 45.569 rules (syntax patterns),
we select 3.027 (6.6%). Moreover, the average accuracy of the model is reduced in just
12.4% (from 10.6% in fields to 16.2% in programs).

4.4. Heterogeneous AST classification

Section 3.4 describes how heterogeneous datasets are created by combining the ho-
mogeneous datasets with the syntax patterns selected in the previous experiment. Now,
we evaluate the performance of the heterogeneous DT models. For that purpose, we
divide all the datasets into 80% of the instances for training and 20% for testing, using
a stratified random sampling method [44]. We repeat the training plus testing process
30 times, measuring the mean, standard deviation and 95% confidence intervals of ac-
curacy, F1 and AUC values [44]. Data split was random and stratified to ensure that
the proportions between classes are the same in each fold, as they are in the whole
dataset (50% / 50%).

In Figure 5, we can see the accuracy of the heterogeneous DT models. When a whole
program is classified, the average accuracy of DTs is 99.6%. This performance is reduced
when we classify smaller AST structures: 99.5% for types, 95.2% for methods, 91.4%
for fields, 88.3% for statements, and 78.1% for expressions. Variability (confidence
intervals) of the results is low (Table 4), because models were created with an important
amount of data (more than 12 million instances in total; see Table 2). 95% confidence
intervals for all the models are lower than 0.04% (Table 4).

Figure 5 compares our system with the two related works to classify the expertise
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Figure 5: Accuracy of all the classifiers (whiskers represent 95% confidence intervals).

level of programmers, discussed in Section 2. The research work undertaken by Abu-
Naser and Lee et al. classifies programmers with 92% and 97% accuracy, respectively.
Our system provides 99.6% average accuracy with 0.02% error, so there seem to be a
significant benefit3. Moreover, our system predicts the expertise level of programmers
by just analyzing their code; it does not need to interact or observe them while they
are coding.

Figure 5 also presents the performances of the homogeneous DT models, comparing
them with the heterogeneous ones. The purpose of this comparison is to see whether
the addition of child subAST patterns actually increases the accuracy of the classifiers.
All the heterogeneous DT models improve the performance of the corresponding ho-
mogeneous ones. Accuracies of statements, methods, fields, types and programs are
increased in 9%, 12%, 9.6%, 3.4% and 6%, respectively.

Besides the DT models to classify programmers, we built other classifiers with dis-
tinct techniques, using the same datasets. As mentioned, we selected DTs because they
are interpretable white-box models, which allow us to extract the syntax patterns of the
classifiers in order to implement the feature learning approach proposed in this article.

3The two related works do not provide 95% confidence intervals or data to compute a statistical
hypothesis test. In addition, we could not repeat their experiments because they use electroencephalo-
graphic sensors, an eye-tracker, and a LP-ITS system that is not available for download.
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DT KNN LG MLP NB SVM
A

cc
u

ra
cy

Statements 0.883 ± 0.04% 0.866 ± 0.04% 0.765 ± 0.03% 0.864 ± 0.03% 0.605 ± 0.06% 0.869 ± 0.04%
Methods 0.952 ± 0.03% 0.927 ± 0.03% 0.837 ± 0.02% 0.938 ± 0.03% 0.752 ± 0.05% 0.946 ± 0.04%
Fields 0.914 ± 0.03% 0.896 ± 0.03% 0.891 ± 0.04% 0.912 ± 0.04% 0.711 ± 0.06% 0.910 ± 0.04%
Types 0.995 ± 0.02% 0.992 ± 0.02% 0.995 ± 0.02% 0.995 ± 0.01% 0.978 ± 0.04% 0.993 ± 0.02%
Programs 0.996 ± 0.02% 0.992 ± 0.03% 0.996 ± 0.02% 0.996 ± 0.02% 0.980 ± 0.04% 0.996 ± 0.01%

F
1

Statements 0.883 ± 0.03% 0.866 ± 0.04% 0.765 ± 0.03% 0.864 ± 0.03% 0.606 ± 0.05% 0.870 ± 0.04%
Methods 0.952 ± 0.03% 0.927 ± 0.03% 0.837 ± 0.02% 0.938 ± 0.03% 0.753 ± 0.05% 0.947 ± 0.04%
Fields 0.914 ± 0.02% 0.896 ± 0.03% 0.891 ± 0.04% 0.912 ± 0.04% 0.711 ± 0.06% 0.910 ± 0.04%
Types 0.995 ± 0.02% 0.992 ± 0.02% 0.995 ± 0.02% 0.995 ± 0.01% 0.979 ± 0.04% 0.993 ± 0.02%
Programs 0.996 ± 0.02% 0.992 ± 0.03% 0.996 ± 0.02% 0.996 ± 0.02% 0.980 ± 0.04% 0.996 ± 0.01%

A
U

C

Statements 0.883 ± 0.04% 0.866 ± 0.04% 0.765 ± 0.03% 0.864 ± 0.03% 0.605 ± 0.06% 0.869 ± 0.04%
Methods 0.952 ± 0.03% 0.927 ± 0.03% 0.837 ± 0.02% 0.938 ± 0.03% 0.752 ± 0.05% 0.946 ± 0.04%
Fields 0.914 ± 0.03% 0.896 ± 0.03% 0.891 ± 0.04% 0.912 ± 0.04% 0.711 ± 0.06% 0.910 ± 0.04%
Types 0.995 ± 0.02% 0.992 ± 0.02% 0.995 ± 0.02% 0.995 ± 0.01% 0.978 ± 0.04% 0.993 ± 0.02%
Programs 0.996 ± 0.02% 0.992 ± 0.03% 0.996 ± 0.02% 0.996 ± 0.02% 0.980 ± 0.04% 0.996 ± 0.01%

Table 4: Performance of all the heterogeneous models (95% confidence intervals are expressed as
percentages). Bold font represents the highest value. If one row has multiple cells in bold type, it
means that there is not significant difference among them (p-value ≥ 0.05, α = 0.05).

DT KNN LG MLP NB SVM

A
cc

u
ra

cy

Expressions 0.781 ± 0.01% 0.766 ± 0.17% 0.714 ± 0.01% 0.762 ± 0.15% 0.534 ± 0.01% 0.773 ± 0.16%
Statements 0.810 ± 0.02% 0.795 ± 0.16% 0.701 ± 0.03% 0.793 ± 0.02% 0.496 ± 0.03% 0.797 ± 0.14%
Methods 0.850 ± 0.04% 0.828 ± 0.06% 0.748 ± 0.06% 0.837 ± 0.05% 0.616 ± 0.06% 0.844 ± 0.05%
Fields 0.834 ± 0.08% 0.818 ± 1.31% 0.814 ± 0.08% 0.833 ± 0.07% 0.629 ± 0.11% 0.651 ± 0.10%
Types 0.962 ± 0.05% 0.954 ± 0.09% 0.916 ± 0.10% 0.951 ± 0.10% 0.798 ± 0.12% 0.962 ± 0.07%
Programs 0.940 ± 1.18% 0.932 ± 1.36% 0.827 ± 2.53% 0.868 ± 5.68% 0.910 ± 1.42% 0.932 ± 1.02%

F
1

Expressions 0.780 ± 0.01% 0.771 ± 0.16% 0.709 ± 0.01% 0.770 ± 0.13% 0.139 ± 0.13% 0.773 ± 0.16%
Statements 0.801 ± 0.02% 0.804 ± 0.15% 0.682 ± 0.03% 0.786 ± 0.03% 0.631 ± 0.02% 0.807 ± 0.13%
Methods 0.843 ± 0.05% 0.842 ± 0.05% 0.732 ± 0.08% 0.829 ± 0.06% 0.431 ± 0.18% 0.831 ± 0.06%
Fields 0.837 ± 0.07% 0.818 ± 1.61% 0.816 ± 0.08% 0.836 ± 0.06% 0.431 ± 0.60% 0.738 ± 0.05%
Types 0.961 ± 0.06% 0.953 ± 0.09% 0.914 ± 0.10% 0.949 ± 0.11% 0.766 ± 0.16% 0.961 ± 0.07%
Programs 0.940 ± 1.17% 0.930 ± 1.42% 0.839 ± 2.16% 0.869 ± 6.45% 0.912 ± 1.39% 0.931 ± 1.02%

A
U

C

Expressions 0.781 ± 0.01% 0.766 ± 0.17% 0.714 ± 0.01% 0.762 ± 0.15% 0.534 ± 0.01% 0.773 ± 0.16%
Statements 0.810 ± 0.02% 0.795 ± 0.16% 0.701 ± 0.03% 0.793 ± 0.02% 0.496 ± 0.03% 0.797 ± 0.14%
Methods 0.850 ± 0.04% 0.828 ± 0.06% 0.748 ± 0.06% 0.837 ± 0.05% 0.616 ± 0.06% 0.844 ± 0.05%
Fields 0.834 ± 0.08% 0.818 ± 1.31% 0.814 ± 0.08% 0.833 ± 0.07% 0.629 ± 0.11% 0.651 ± 0.10%
Types 0.962 ± 0.05% 0.954 ± 0.09% 0.916 ± 0.10% 0.951 ± 0.10% 0.798 ± 0.12% 0.962 ± 0.07%
Programs 0.940 ± 1.18% 0.932 ± 1.35% 0.827 ± 2.52% 0.868 ± 5.72% 0.910 ± 1.40% 0.932 ± 1.03%

Table 5: Performance of all the homogeneous models (95% confidence intervals are expressed as per-
centages). Bold font represents the highest value. If one row has multiple cells in bold type, it means
that there is not significant difference among them (p-value ≥ 0.05, α = 0.05).

However, we want to see to what extent the classification accuracy of DTs is similar to
other common machine-learning approaches.

In particular, we built other classifiers using logistic regression, (Gaussian) näıve
Bayes, multilayer perceptron, support vector machines, and k-nearest neighbors. For all
these models, we first perform a feature selection process and then hyper-parameter tun-
ing. Features were selected with the SelectFromModel meta-transformer that chooses
features depending on importance weights. The estimator used to select the features
was a random forest classifier with 100 trees. Hyper-parameter tuning was done the
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same way as for DTs —the different hyper-parameter options used can be consulted
in [45]. We repeat the training plus testing process 30 times, computing the 95% con-
fidence intervals. All the algorithms, including feature selection and hyper-parameter
tuning, were executed in parallel using all the cores in our server.

Figure 5 and Table 5 show the performance of the different classifiers for the homo-
geneous datasets. DT is the method with the best average performance. We performed
a statistical hypothesis test (α = 0.05) to compute whether the performance of each
method is significantly different to DT (p-value < 0.05). For accuracy and AUC mea-
sures, DT provides the highest performance (in three cases, statistical differences with
SVM are not significant; see Table 5). For F1, there is one case (statements) where
SVM performs better than DT; in the rest of scenarios, DT provides the highest F1
measures. For the heterogeneous models (Table 4), DT is the technique with the high-
est performance for all the measures (accuracy, F1 and AUC). When classifying types
and programs, LG, MLP and SVM are not significantly different to DT. All these re-
sults validate that DT not only builds interpretable white-box models, but also provide
excellent performance results for the given datasets.

4.5. Heterogeneous syntax pattern extraction

The expert and novice syntax patterns found in the heterogeneous models are a
valuable outcome of our research. As mentioned, they could be used in programming
courses, to improve the hints given by development environments, and to create Intelli-
gent Tutoring Systems. As described in Section 3.5, we traversed the heterogeneous DT
models to extract the final syntax patterns used by expert and novice Java program-
mers. For example, the following rule classifies a programmer as expert, using syntax
patterns of program, type and method constructs:

if enumeration percentage(program)>0 and interface percentage(program)>1
and ∃ type1 . category(type1)==class and generic types(type1)>0
and ∃ type2 . category(type2)==class and extend classes(type2)>0

and implement interfaces(type2)>1
and ∃ method . number statements(method)<=3

then expertise level = expert

The previous pattern describes programs that contains enumeration and interface
(more than 1%) types, implements no less than one generic type, at least one class
extend another class and implements more than one interface, and one method has
three or fewer statements.

Likewise, the following method pattern was extracted to classify beginners:

if not(isOverride(method)) and numberOfAnnotations(method)==0
and numberOfParameters(method)==0 and not(isFinal(method))
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and numberOfThrows(method)==0 and numberOfStatements(method)<=2
and visibility(method)==public and numberOfGenericTypes(method)==0
and namingConvention(method)==snake case
and ∃ statement . depth(statement)>=67

then expertise level = beginner

Our system extracted 742, 721, 782, 636 and 575 heterogeneous syntax patterns for,
respectively, statements, methods, fields, types and programs. All the patterns found
are available for download at [45].

4.6. Scoring the expertise level of programmers

An important discussion regarding the classification method proposed in this article
is about the binary character of classifying programmers as either experts or beginners.
As we know, the classification of programmers by their expertise level is not binary,
since many programmers may be classified as intermediate level. Fortunately, since the
classifier infers the syntax patterns for novice and expert programmers, it is possible to
measure the probability of being in one of these groups, and hence to score how close
the programmer is to be an expert or beginner.

Logistic regression is a calibrated probabilistic classifier that provides a score that
can be directly interpreted as a confidence level [46]. We built logistic regression models
from the heterogeneous datasets to compute the probability of a programmer to be
classified as novice or expert. Figure 6 shows the percentage of instances per score,
for the two labels (beginner and expert). We can see how the most common score is
a number between 0.9 and 1, because all the instances in the dataset are code written
by either beginners or experts. As expected, expressions are the syntax patterns with
the worst performance (71.4% of the instances are classified correctly), and programs
outperform the rest of syntax constructs (99.6%). We can also see in Figure 6 that
the model classifies experts better than beginners. It seems to be easier to identify the
syntax patterns that expert programmers write, rather than those coded by beginners.

4.7. Execution time of the proposed method

Table 6 shows the execution times of all the phases of the proposed system. The
system takes as input the Java programs described in Section 4.1, and produces six
heterogeneous classifiers plus the final syntax patterns for each syntax construct.

The whole process took 6 hours and 12 minutes (22,287 seconds) to run in the
computer described in Section 4.2. The two most expensive phases are the construction
of datasets, which take 2.44 and 3.08 hours for the homogeneous and heterogeneous
datasets, respectively.

The generated DT classifiers are able to predict the expertise level of Java program-
mers almost instantaneously (average execution time is 4.6 microseconds). Logistic
regression and multilayer perceptron perform similarly (differences are not statistically
significant). Näıve Bayes, SVM and KNN require, respectively, 3.87, 987 and 6079
times more execution time than DT to classify a Java programmer.
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Figure 6: Percentage of instances per score, using a probabilistic LG model.

Programs Types Methods Fields Statements Expressions Total

H
o
m

o
g
en

.

Dataset construction 1.961 46.14 296.4 113.1 1754 6582 8,793.2
Model construction 0.030 0.193 0.064 0.028 0.487 2.375 3.2
Syntax pattern extraction 0.009 1.043 13.24 0.439 312.5 1595 1,921.7
Pattern selection and simplification 0.316 0.410 1.366 0.183 9.219 27.38 38.9

H
et

er
o
g
en

.

Dataset construction 3320 3107 2399 1093 1168 — 11,087.6
Model construction 0.210 0.241 0.209 0.117 0.654 — 1.4
Syntax pattern extraction 0.914 1.164 21.21 0.994 401.1 — 425.4
Pattern selection and simplification 0.449 0.534 2.456 0.436 11.954 — 15.8

Total 3,324 3,156 2,734 1,208 3,658 8,206 22,287.3

Table 6: Execution times (seconds) of all the modules in the architecture.

5. Conclusions

The proposed feature learning approach to classify heterogeneous compound tree
structures provides higher accuracy than the existing methods to classify the program-
ming expertise level of Java developers. The compound heterogeneous classifiers are
enriched with the most determinant syntax patterns extracted from the homogeneous
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models, significantly improving the performance of the classifiers. Our system allows
classifying different syntax constructs found in Java programs. Decision trees provide
good performance, scale well for large datasets, and create interpretable white-box
models. Classification performance ranges from 78.1% when labeling expressions up to
99.6% when labeling programs. The interpretable white-box models obtained give us in-
formation about the syntax patterns used by expert and novice programmers. By using
a probabilistic classifier, it is also possible to score the expertise level of programmers
regarding the syntax patterns used in their code.

Future work will be using the same approach to see to what extend we can identify
the programmer that developed a particular code fragment. We would also like to use it
for identifying potential plagiarisms among students. We plan to use the heterogeneous
models to see if student’s score is increased throughout a programming course.

Other lines of future work are focused on using alternative approaches for the same
case scenario. Graph Neural Networks can be used to classify graph structures [29]. Al-
though they do not build interpretable models, they might provide better performance.
Inductive Logic Programming (ILP) is another approach to perform graph mining [33].
Some optimizations could be studied to optimize the particular problem of classifying
programmers by their expertise level.

All the datasets, source code, selected features, model hyper-parameters, the syntax
patterns found, and the evaluation data used in our work is available for download at
http://www.reflection.uniovi.es/bigcode/download/2019/fgcs.
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Appendix A. Features of the homogeneous datasets

Tables A1-A5 show the different features used to build the homogeneous datasets.
We do not include any feature that may depend on the size of the program. For example,
Table A5 does not include features such as the number of classes or interfaces. Their
occurrence is considered, yet relative to the number of types used in the program.
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Name Description

Category Syntactic category of the current node, given the abstract grammar
for the Java language.

First, second and third child Syntactic category of the corresponding child node.
Parent node Syntactic category of the parent node.
Role Role played by the current node in the structure of its parent node.
Height Distance (number of edges) from the current node to the root node

in the enclosing type (class, interface or enumeration).
Depth Maximum distance (number of edges) of the longest path from the

current node to a leaf node.

Table A1: Feature abstractions used for statements.

Name Description

Visibility Public, protected, package or private.
IsAbstract, IsStatic, IsFinal True or false.
ReturnsVoid, Overrides True or false.
Number of parameters Number of declared parameters.
Number of generics Number of generic types declared for that method.
Number of throws Number of exceptions declared in the throws clause.
Number of annotations Number of annotations declared for that method.
Number of statements Number of statements used in the method body.
Number of local variables Number of local variables declared.
Naming convention Naming convention used for the method name (snake case, upper,

lower, camel up or camel down).
Main naming locals Main naming convention used for local variables.

Table A2: Feature abstractions used for methods.

Name Description

Visibility Public, protected, package or private.
IsDefined Whether a value is defined in its declaration.
IsStatic, IsFinal True or false.
Number of annotations Number of annotations declared for that field.
Value If any, category of the expression assigned in its definition.
Naming convention Snake case, upper, lower, camel up or camel down.

Table A3: Feature abstractions used for fields.
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Name Description

Visibility Public or package (non public).
Category Class, interface or enumeration.
IsAbstract, IsStatic, IsFinal True or false.
Extends Whether the type extends another type.
Number of annotations Number of annotations declared for that type.
Number of extends Number of types that the current type extends (Java interfaces may

extend any number of interfaces).
Number of implements Number of interfaces implemented.
Number of generics Number of generic types declared for that type.
Number of methods Number of methods declared for that type.
Number of overloaded Number of overloaded methods declared for that type.
Number of constructors Number of constructors implemented in that type.
Number of fields Number of fields defined in that type.
Number of nested classes Number of nested classes defined in that type.
Number of inner classes Number of inner classes defined in that type.
Number of fields Number of fields defined in that type.
Naming convention Naming convention used for the type name (snake case, upper, lower,

camel up or camel down).

Table A4: Feature abstractions used for types.

Name Description

Class percentage Percentage of classes (out of all the types) defined in that program.
Interface percentage Percentage of interfaces (out of all the types) defined in that program.
Enum percentage Percentage of enumerations (out of all the types) defined in that program.
Code in default package Whether the program implements types in the default package.
Code in packages Whether the program implements types inside packages.

Table A5: Feature abstractions used for programs.
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