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Abstract

The development of connected mobile applications for a broad audience is a complex task due to
the existing device diversity. In order to soothe this situation, device-independent approaches are
aimed at hiding the differences among the diverse families and models of mobile devices. This work
proposes the DIMAG software framework to generate connected mobile applications for multiple
software platforms, employing a declarative description of applications. DIMAG has been imple-
mented taking advantage of existing standards, giving importance to the connectivity of mobile
applications. DIMAG applications are based on the traditional client-server paradigm. Server side
applications are generated for the Java EE platform, and client side applications are dynamically
produced for different mobile platforms. In addition, the possibility of occasional disconnections of
the mobile device is taken into account. This problem is tackled with the definition of data and state
synchronization policies between the server and the client, using XQuery as the language to access
the synchronized data. IDEAL2 has been used to define abstract user interfaces, being rendered
to the actual views of the specific target devices. Application workflow definition is the central
element of a DIMAG application, defined as state machines serialized in SCXML documents. This
language is enriched with several additional XML elements and attributes to add the expressiveness
power needed in the proposed framework.

Key words: Device fragmentation, mobile applications, data and state synchronization, partially
connected architectures, dynamic code generation

1. Introduction

Development of connected mobile applications is a promising field for companies and researchers.
Around 6 billion cellular connection subscriptions (86% of the world population) have been reached
by the end of 2012 [1]. This means a potential market that exceeds that of the traditional market
of fixed lines users (about 1,270 million subscriptions, by the end of 2012 [1]), so more and more
software companies are looking for their slice of that global pie.

The heterogeneity of device models and versions, features (screen size, resolution and color,
data input and output mechanisms), operating systems, and other elements of the software stack,
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makes it difficult to create applications for all the mobile users. This problem is known as device
fragmentation [2] (or device diversity) within the community of mobile developers and researchers.
A common approach to face that problem is to create different versions of the same application
for different device models and platforms. This usually leads to variable user experience among
platforms. In addition, it multiplies software maintenance efforts, as the company must actually
maintain distinct implementations of the same application. The companies that develop software
for mobile devices try to cover as many devices as possible. Thus, it is advisable to build platforms
that allow developers to create applications once, and execute them in every mobile device.

The creation of a development framework to write applications once and execute them in every
mobile device is a complex task. The first factor to be taken into account is the huge amount of
mobile software environments (operating systems and virtual machines) in the market. The software
industry expects mobile application development frameworks to create applications at once for as
many target platforms as possible. However, it is a challenging task for companies creating mobile
application development frameworks to cover all the software platforms in the market. A reasonable
approach seems to be the initial support for a reduced set of the most popular platforms, allowing
covering an increasing number of them. Therefore, one of the most important features of mobile
application development frameworks is the extensibility in terms of supported target platforms.

A recent press release from IDC (International Data Corporation) indicating the market share
of mobile operating systems for smartphones in the fourth quarter of 2012 [3] shows that Android is
the most widely spread mobile operating system (70.1%), followed by Apple i0S (21%), BlackBerry
RIM (3.2%), Windows Phone / Mobile (2.6%), Linux (1.7%) and others (1.3%). In order to cover
this ample variety of operating systems, some software technologies allow developers to create
applications once, and generate them for several software platforms. Examples of these tools are
Titanium, Corona, Rhomobile, and PhoneGap. Titanium, Corona and Rhomobile create native
applications, whereas PhoneGap is the main exponent for hybrid applications —native applications
based on an embedded Web browser. Some facilitate the separation between presentation and
behavior based on Web development languages (HTML, CSS and JavaScript in Titanium and
PhoneGap). However, all of them are mostly based on imperative approaches for application
definition, and they do not consider the transparent generation of distributed applications. To the
knowledge of the authors, no approach seems to exist in the market that provides a declarative
application definition to generate full native client-server applications.

The main contribution of this paper is DIMAG, a Device-Independent Mobile Application Gen-
eration framework, which provides the dynamic generation of client-server applications for any
mobile device. Applications are specified with one single declarative specification for each applica-
tion. DIMAG involves an important amount of technologies, reusing and refining existing standards
as much as possible. Besides, extensions to existing standards are also proposed, as for some of the
problems to be solved no standard has been proposed yet. Our work intends to be as flexible as
possible, leaving several aspects of the proposed framework open in order to cover them in future
revisions.

The rest of the article is organized as follows. Section 2 defines the different elements that com-
prise a DIMAG application, and Section 3 describes the existing standards to define those elements.
Section 4 provides an overview of DIMAG, including an example application that facilitates the
explanation of the framework modules. It also defines the DIMAG framework by explaining its ar-
chitecture, and the declarative languages used to create DIMAG applications. Section 5 emphasizes
the definition of state and data synchronization policies between the (mobile) client and the server
sides, an aspect not sufficiently covered by existing standards. Section 6 explains implementation



issues. Related work is discussed in Section 7 and Section 8 presents the conclusions and future
work.

2. Definition of a DIMAG Application

DIMAG uses a declarative approach to define applications. This way, developers have to express
what the application is meant to do, instead of expressing how to do it (the typical approach in the
traditional programming languages used for building mobile applications). We have considered a
declarative approach because we think it has many benefits. First, it provides a higher abstraction
level with sufficient expressive power to generate code for different target platforms. Second, soft-
ware maintainability is improved because there is only one single implementation of each mobile
application. We also think that a declarative approach facilitates the translation of applications to
different languages and platforms, since different imperative strategies can be followed depending
on the target platform. Finally, it may allow people without previous experience in imperative
programming languages to create applications.

Applications in the DIMAG framework are conceived as distributed client-server programs.
Therefore, two different sides of an application are generated: the server side, to be run in an
application server; and the client side, to be downloaded and executed in the mobile client. The
server is compiled for the Java EE platform, but the client side is generated and compiled for
different mobile operating systems and software environments —depending on the actual device that
demands the application.

DIMAG applications are divided into three modules:

1. Application workflow. An application is modeled as a state machine, made up of a set of
states (one of them considered as the initial one) and transitions between states, triggered
when a given event happens.

2. User interface. When the application requires displaying information to (or receive data from)
the user, a view is associated to a specific state of the application.

3. General information. This includes the application identification, its description, definition
of data sources, synchronization policies between the client and the server, and the external
resources required (e.g., images, audio and video).

3. Existing Standards

As mentioned, we consider that the use of standards is a key point when creating our platform.
Since many technologies need to be used and combined, we have tried to avoid reinventing the
wheel, reusing as many existing technologies as possible. Standardized technologies are the result
of the effort of organizations and research groups of different nature, with different goals. One of
the main expectations of standardization bodies is the usage of the technology and the feedback
from users to refine the standard. Therefore, in this paper we analyze the existing standards and
propose soft extensions for some of those used to define DIMAG, providing new ideas to refine
them.

Since standard is a concept that can be interpreted in different ways, we define the intended
meaning of this term in this work:
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— In the context of computer languages, a standard is a language supported by a standardization
organization, an organization that releases recommendations, or any open-source community
with a significant number of participants and users.

— In the context of existing software to be reused, a standard is a reference implementation of
a language processor of a standard language, or a de facto software standard.

3.1. Workflow Definition

The definition of application workflows is a topic that has already been treated by both the
research community and the software industry. Most of the existing works are focused on distributed
workflow among heterogeneous systems, like the XML Process Definition Language (XPDL [4],
which has been created to interchange business process models between different software tools)
and the Web Services Business Process Execution Language (WS-BPEL [5], which uses SOAP as the
means of communication between parts of distributed applications and services). More recently, the
W3C has developed its own workflow definition language, SCXML (State Chart eXtensible Markup
Language [6]), which has been created by the Voice Browser working group as a multimodal control
language in the Multimodal Interaction Framework.

We have selected SCXML for describing the application workflows in DIMAG. The main reasons
were its simplicity, the expressiveness power to define state charts, and the available open-source
language processors. The last reason mentioned is especially important for our purposes, because
existing SCXML language processors have facilitated the rapid implementation of the DIMAG
framework, including the modification and addition of new elements to the W3C specification. We
have used the Apache Commons SCXML implementation [7].

WS-BPEL has been discarded as it is directly associated to a specific technology, SOAP, whereas
DIMAG has in mind independence of the actual communication technology. XPDL is an interesting
technology, but a deep understanding of its definition and its extensions would have taken longer
due to its greater complexity when compared to SCXML.

3.2. User Interface Definition

Regarding the declarative languages for user interface definition, several user interface definition
languages have already been published in the standards domain. UIML [8] has been developed by
the Organization for the Advancement of Structured Information Standards (OASIS). It is aimed
at creating declarative definitions of user interfaces by means of six orthogonal pieces: definition
of the UI parts, presentation (look/feel/sound) used for those parts, content (text, images, sound),
behavior of the Ul, mapping of the Ul parts to controls in a given toolkit, and the business logic
components the Ul is connected to. There are implementations of UIML renderers [9, 10] that could
have been reused to implement the user interface module of the DIMAG framework. However, the
activity of OASIS on the development of the specification is stopped since 2008, and some of the
participants in its definition have moved their efforts to other languages.

UsiXML [11] is one of the languages proposed by some of the former participants in the definition
of UIML. As proposed in the CAMELEON project [12], UsiXML supports different abstraction
levels when defining user interfaces: Abstract User Interface (AUI) for a high-level UI definition,
independent of the interaction modes or target platforms; Concrete User Interface (CUI) for a Ul
definition that refines the AUI level, considering aspects devoted to interaction modes; and Final
User Interface (FUI), which results from the conversion of the CUTI to the format in which the
application is executed in a target platform. AUI and CUI definitions would be supported by the
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UsiXML specification, whereas FUI is the translation to the different execution platforms. Existing
UsiXML processors have been analyzed in order to improve user interfaces in DIMAG [13, 14].
Unlike UIML, which is supported by a standardization organization (OASIS), UsiXML cannot be
considered as a standard because it is defined by an industrial consortium advised by another
research consortium. In addition, UsiXML focuses in the transformations between the AUI and the
CUI, and does not describe the transformation process from CUI to FUI.

The choice for UI definition in the DIMAG framework has been IDEAL2 [15], the language
used in the MyMobileWeb open-source project [16]. This project implements a modular and open-
standards-based software platform that facilitates the development of mobile Web applications and
portals, providing an advanced content and application adaptation environment. IDEAL2 uses
concepts from W3C recommendations such as XHTML (e.g., content structuring and separation
of content and style by means of CSS), and W3C technical reports, such as DIAL [17] for content
selection and filtering depending on device features. Although IDEAL2 is not supported by any
standards-developing organization, it has been created by consensus of several universities, tech-
nology centers, and companies that participate in the MyMobileWeb project [16]. In addition, the
definition of IDEAL?2 is currently being considered by the W3C MBUI working group for the defi-
nition of a CUI language for graphical interaction. The experience and participation of the authors
of this article in the MyMobileWeb project and their knowledge of the IDEAL?2 language processor
have also motivated the choice of this language.

3.8. Synchronization

The definition of the datasets to be synchronized between the server and the client has been
done with a standard language defined by the W3C Recommendation: XQuery [18]. However,
no standards have been found in what regards to data and state synchronization. This is the
reason why the authors have defined a declarative mechanism to specify the synchronization of
data between the server and client sides of applications (detailed in Section 5.3).

XQuery is a declarative language designed to perform queries on data collections expressed in
XML. Its main goal is the extraction of information from a dataset organized as a tree of elements,
independently of the data origin. It is a functional language, so every query is an expression
returning a result. Expressions can be combined in a flexible way, creating more complex and
powerful expressions.

Traditional implementations of XQuery like Saxon [19] have a size of 3 MBs. This fact prevents
developers from using them in mobile devices. For that reason, the developer community has created
MXQuery [20], a lightweight but full-featured XQuery implementation with a reduced the size of
1 MB. We used MXQuery for Android OS, but it is still too big to be executed in low-end mobile
devices. Therefore, for this kind of devices, we have developed an alternative implementation that
supports a small set of features of the XQuery specification.

In this subsection, we have introduced the standards used to tackle the synchronization of infor-
mation in the DIMAG framework. All the details concerning its design are discussed in Section 5.3.

4. Overview of the DIMAG Framework

There exist previous works in the generation of user interfaces for multiple software plat-
forms [21], techniques to link declarative user-interface definitions to existing platform-dependent
code [14], and authoring tools to create device-independent applications [21]. DIMAG raises the
necessity to create a holistic solution to the problem of creating connected applications for mobile
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devices, whereas previous research and development efforts have dealt with some of the different
aspects related to the DIMAG proposal. Such a proposal must not only face the problem of gener-
ating the code of a distributed client-server application for different software platforms; it must also
manage the lifecycle of applications (build process, server-side deployment, client software provision
to mobile devices, installation, execution, and client and server version update), and the different
types of runtime client-server interactions (e.g., data and state synchronization between client and
server).

4.1. A Motivating Example

The following motivating example shows an example use of the DIMAG framework at its current
stage. The example simulates a simple online shop in which users can search products through
different categories, and store the selected products in a shopping cart until the final completion
of the purchase. Figure 1 shows the navigation flow of the motivating example. Each screen is
labeled with its identifier, and directed arrows suggest some of the possible transitions between
them. These arrows are interrupted in Figure 1 by boxes indicating the information synchronized
between the server and the client when the corresponding transition occurs.

In the client-server architecture followed (Section 5.1), the client implements a simple persis-
tence layer that reflects part of the persistence system in the server side. Changes on data occur
periodically in both sides of the application, and the synchronization policy defines when these
changes are propagated between both sides of the application. The data synchronization policy
keeps the data layer up-to-date in both sides seamlessly, while state synchronization maintains the
server side informed about the events triggered in the client side.

Data synchronization happens when the application data layer is accessed. In the example, this
occurs when the user is authenticated and when the lists of categories and products are shown.
Data synchronization also takes place when the user adds an item to the shopping cart, and when
he or she decides to check out the selected items. It is worth noting that this kind of synchronization
does not always imply real synchronization against the server. For example, when a user adds an
item to the shopping cart, only the local data layer is modified. However, for simplicity (as in most
cases both actions are directly related) and legibility purposes (see Section 5.3), every data layer
access in DIMAG is encapsulated with a data synchronization element.

State synchronization takes place when the user selects a specific category or product. Then,
the selected item is transparently transmitted to the server for statistical purposes, saving the
categories and products commonly selected among the users.

5. Definition of the Framework

5.1. Architecture

Figure 2 shows the architecture of the DIMAG framework. The left part of the figure shows
the client side of a DIMAG application, whereas the right part presents the server side. Once the
application definition is created, the server side is deployed in the application server and the client
side is made available for remote users to download (and install) in their mobile devices.

The server side runs an instance of each application deployed in DIMAG. The server implements
the following four modules (Figure 2):

— The communication layer, which listens to HTTP requests from clients. There are two types
of requests: those initiated by the users when their mobile Web browser downloads a mobile
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Figure 1: Visual description of an example DIMAG application.

application, and those HT'TP requests performed by the mobile application logic. Regarding
standards, the DIMAG framework uses the JSR-154 Java Servlet 2.4 Specification [22]. For
Web services invocation, SOAP [23] and WS-I Basic Profile [24] are used. The latter is used
to ensure Web services interoperability among different implementations, ready to work in
devices with resource constraints.

The device detection and application provision module, which receives information from
HTTP requests when users try to download an application. Evidences are extracted from
those requests in order to identify the software platform of the device, using a Device De-
scription Repository (DDR). After identification, this module looks for the appropriate version
of the application in its application repository, and sends it to the client device for installation.
If the repository does not have the appropriate version of the application, a new version is
generated by the code generation module. The standard W3C Device Description Repository
Simple API [25] has been used to design this module, choosing the DDR Simple API Reference
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implementation within the open-source Morfeo Project [26].

— The code generation module, which dynamically generates the platform-specific client appli-
cations selected by the user, as commanded by the second module. If the DIMAG framework
does not support the implementation for a specific device, it will log information about the
identification evidences. This is done for maintainability purposes, so that the administrator
can identify the necessity to generate applications for unsupported platforms. This way, com-
panies exploiting the DIMAG framework are reported about unsupported devices or device
families willing to use specific applications. The framework is designed to be able to support
code generation for new target software platforms at runtime, without needing to restart its
execution.

— The synchronization module is aimed at synchronizing information between the server and
the client. This includes data synchronization (between the server database and the local
client storage) and synchronization of the running workflow state between both sides of the
application. The main goal is to obtain a simple declarative system enabling the tuning of
the level of data synchronization desired for an application. For the sake of simplicity, data
sources to be synchronized are simple files (e.g., images and XML documents). In the server
side, there is a connector between these files and the relational database that transparently
manages application persistence. When information is updated in any of the tables of the
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database, data files are accordingly updated. Similarly, changes in data files (as a consequence
of changes in the mobile client side) also trigger updates of the relational database. DIMAG
uses the SyncML [27] protocol and the Funambol open-source synchronization server [28] for
client-server file synchronization.

The client side includes a communication layer to perform HTTP requests to the server (i.e.,
to invoke the remote methods in the server Web services), a synchronization module corresponding
to that in the server, and the client side of the application itself. The client application, in turn,
consists of a manager responsible for initializing the application, and managing the specific features
of the particular target platform. For example, a C# Windows Mobile application makes DIMAG
generate code using the Windows Mobile API from Funambol, in order to synchronize information
between both sides; for SOAP interchange, a SOAP client stub is generated from the WSDL Web
service definition by means of the .NET Framework SDK tools; and System.Net.HttpWebRequest
and System.Net.HttpWebResponse .NET Compact Framework classes are needed for more specific
REST HTTP messages. On the other hand, for Java ME MIDlet-based applications, the DIMAG
code generator module uses the Java ME API from Funambol, the JSR-172 [29] Web Services
implementation, and the javax.microedition.io.HttpConnection class.

When deployment takes place, an instance of the server side is run and a new download URI
becomes available in the Web server. Then, when users access that URI from their mobile Web
browsers, a new version of the application client side is dynamically generated for their specific
device.

5.2. Declarative Definition of Applications

The DIMAG framework is based on a set of declarative languages which are combined in order
to define connected mobile applications. First, DIMAG-Root is an XML language to define the
general aspects of a DIMAG application. It includes references to two external documents: user
interface and workflow definition. The former is expressed with the DIMAG-UI XML language, a
simplification of MyMobileWeb IDEAL2 [15]. This language fulfills the requirement of separating
the content from the user interface and its style, referring to external CSS files. Although workflow
definition is expressed in SCXML, we propose several extensions to the language (Section 5.2.2) to
provide all the elements required in the DIMAG workflow description.

Synchronization information (data sources and data synchronization policies) is currently placed
in the DIMAG-Root and the SCXML languages. This has been done by extending the previous
definition of the DIMAG framework [30]. Future versions of DIMAG will probably separate data
definition and synchronization in different modules.

5.2.1. DIMAG-Root Language
The DIMAG-Root document used in the motivating example described in Section 4 is shown in
Figure 3. A DIMAG-Root document includes the following XML elements:

— <desc> describes the application version by means of its <appversion> child element. In
DIMAG, different versions of client-server applications can be executed concurrently.

— <flow> indicates the URI to an SCXML document describing the application workflow.

— <ui> provides the path to the DIMAG-UI documents defining the views of the application.
There is one DIMAG-UI document for each screen to be displayed by the client side of the
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<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE application SYSTEM "application.dtd">
<application xmIns='http://dimag.org/namespace/application'>
<desc><appversion>1.8.0</appversion></desc>
<flow><flowdir path="/dimag/resources/flow"/></flow>
<ui>
<xmldir path="/dimag/resources/xml"/>
<cssdir path="/dimag/resources/css"/>
</ui>
<syncpolicy>
<syncdataserver><URI>http://156.136.2.19:7777</URI></syncdataserver>
</syncpolicy>
<datamodel>
<syncdir path="/dimag/resources/data"/>
<entities>
<entity id="Products" filename="products.data" defaultSync="preaccess"/>
<entity id="Categories" filename="categories.data" defaultSync="both"/>
<entity id="Users" filename="users.data" defaultSync="both"/>
<entity id="ShoppingCart" filename="cart.data" defaultSync="postaccess"/>
</entities>
</datamodel>
<server><URI>http://156.136.2.19:4567</URI></server>
<resources>
<lib path="/dimag/resources/externallib"/>
<media path="/dimag/resources/media"/>
</resources>
<distribution><generatedcode path="/dimag/generatedcode"/></distribution>
</application>

Figure 3: Example DIMAG-Root document.

application. The name of each document is built by appending the value of the id attribute
of each view state in the SCXML document to the XML filename extension.

— <syncpolicy> allows defining data and state synchronization policies between the server
and the client. In the example in Figure 3, it is only indicated the URI of the synchronization
server.

<datamodel > defines the data sources to be used by the application. As mentioned, data
sources are implemented by means of XML documents transparently synchronized with the
server database (Section 5.3).

— <server> provides the server endpoint used for data and state synchronization, and remote
method invocation.

— <resources> specifies the URIs to the external resources needed by the application, such
as external software libraries (<1ib>) or media files (<media>).

— <distribution> indicates information about how to distribute the application. Currently,
it provides the path of the generated installers for the different mobile platforms.

5.2.2. SCXML

Application designers and engineers commonly propose a set of mockups (screen drafts) laid
out in a diagram, linking them with arrows that suggest the possible transitions from one screen
to another one. They usually annotate these transitions with comments that describe under which
conditions the transition between two screens take place. This procedure is carried out either by
hand or by means of mockup generation tools, such as Pencil [31] or Axure [32]. Such diagrams are
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an informal way to depict application workflow similar to state chart diagrams. A state diagram
provides an abstract description of the behavior of a system. More particularly, they facilitate
the description of an application by representing it as a set of states, connected by means of
transitions. Following the same approach, the workflow for each DIMAG application is defined as
a state machine. Figure 4 depicts the state machine of the example application shown in Figure 1.
Rounded-corner rectangles represent the different states of the application. Each state may imply
the execution of actions. In some cases, the actions carried out when the application is in a
specific state include the representation of a screen on the device display. This happens in the
Login, Error, ShopPresentation, Categories, Products, Product, and ShopEnding states. This
is the reason why they are marked with a V in the upper right corner of the representation of the
corresponding states. In the rest of the cases, actions are performed without updating the device
display (ValidateLogin).

enterButton_onclick ValidateLoi 1 loginOK
ogin >| ValidateLogin rror

loginOK

goButton_onclick (
>l ShopPresentation

enterButton_onclick

ShopEndi ! buyButton_onclick Cat . ! addButton_onclick
opEnding K aegonesj\

categoryList_onclick backButton_onclick

v —
ductList lick
Products{1 productLIst_oncic Product

backButton_onclick

Figure 4: State diagram of the example application shown in Figure 1.

Figure 4 also shows how transitions between states are represented as directed arrows. The
direction of the arrows implies that the state machine changes from a source state to a destination
state. Special symbols mark specific states as initial (black circle) and final (black circle with
surrounding white circumference) states. Arrows are labeled with the event or condition that
triggers the associated transition. In the example application, most of the transitions are triggered
by the event of clicking a button in the source state. In contrast, the mutually exclusive transitions
from ValidateLogin to Error and to ShopPresentation depend on the value returned by the
server after login and password submission, validating or rejecting user authentication.

This is a description of the application workflow state diagram shown in Figure 4:

— The application starts in the Login state, displaying the Login screen in Figure 1. In this
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state, two variables (user and password) are set with the values introduced by the user in
the User and Password text fields. When the enterButton button (captioned as “Enter”) in
the Login screen is clicked, the enterButton_onclick event is raised and, subsequently, the
transition from the Login state to ValidateLogin takes place.

The ValidateLogin state submits the login and password to the server. The returned value
indicates whether the user is successfully authenticated. This value triggers the transition to
either the ShopPresentation (true) or Error (false) states.

The Error state (not shown in Figure 1 for the sake of clarity) is a view state showing an
error message. It allows getting back to the previous state in which the error condition was
detected.

ShopPresentation shows the ShopPresentation screen, with a welcome message confirming
the successful login. Clicking on the enterButton button (captioned as “Begin!”) raises an
enterButton_onClick event that triggers the transition to the Categories state.

The Categories state renders the homonymous view and asks the server for the existing list
of categories, and the products currently included in the shopping cart. The list of categories
is shown in the “Category List” listbox. A categoryList_onClick event is triggered when
the user selects a category, changing to the Products state. The selected category is passed
as an argument in the transition.

The “Shopping Cart” listbox shows the list of products selected by the user. When the “Buy”
button is clicked, a buyButton_onClick event is raised, and the purchase process is considered
as completed (a transition to ShopEnding takes place).

The Products state is similar to Categories, but displaying all the items available for the se-
lected category. The selection of any of the items in the product list triggers the productList-
_onClick event, involving a transition to Product.

The Product state shows the detailed information of the product selected. The Product screen
includes a “Add to shopping cart” button that serves as a confirmation for the inclusion of
the item in the shopping cart.

The ShopEnding state is reached after purchasing the products in the shopping cart. It
allows starting another purchase process (clicking on “Go shopping!”), triggering a transition
to ShopPresentation.

All the screens provide both the “Exit” and “Back” buttons, allowing application termination
and returning to the previous screen, respectively. Therefore, all the view states allow the
transition to the immediately previous view state visited (and program termination).

DIMAG uses the SCXML language to express application workflow as state machines. SCXML

was created by the W3C Voice Browser working group. We have implemented the processing of
SCXML documents by reusing the Apache Commons SCXML open source project [7]. Figure 5
shows the SCXML document specifying the state machine illustrated in Figure 4. SCXML [6] defines
states by means of the <state> element, setting one of them as the initial one (initialstate). It
also allows defining the transitions between states, and the actions to be performed when entering
(<onentry>) and leaving (<onexit>) a state.
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<scxml xmins="http://www.w3.0rg/2005/07/scxml"

xmlns:mobapp="http://my.custom-actions.domain/CUSTOM"

version="1.0" initialstate="applicationFlow">
<state id="applicationFlow" initial="login">
<state id="login" category="view">
<transition event="enterButton_onclick"
target="validateLogin" />
</state>
<state id="validateLogin">
<onentry>
<dimag:syncdata id="Users" sync="preaccess"
level="mandatory">
<dimag:query>
for $loginData in doc("users.xml")/users/user
where $loginData/login="${textFieldLogin}" and
$loginData/password="${textFieldPassword}"
return $loginData
</dimag:query>
</dimag:syncdata>
<dimag:invokeMethod scope="server"
className="org.dimag.main.ValidateLogin"
method="validateLogin" result="${loginOk}">
<dimag:argument expression="${loginData}"/>
</dimag:invokeMethod>
</onentry>
<transition cond="${loginOk == 'true'}"
target=" shopPresentation" />
<transition cond="${loginOk == 'false'}"
target="error" />
</state>
<state id="shopPresentation" category="view">
<transition event="enterButton_onclick"
target="categories" />
</state>
<state id="categories" category="view">
<onentry>
<dimag:syncdata id="Categories" sync="preaccess"
level="optional">
<dimag:query>
for $categoryListData
in doc("categories.xml")/categories/category
return $categoryListData
</dimag:query>
</dimag:syncdata>
</onentry>
<transition event="categoryList_onclick"
target="productList">
<dimag:syncstate
value="${categoryList_selectedltem}"/>
</transition>
<transition event="buyButton_onclick"
target="shopEnding">
<dimag:syncdata id="ShoppingCart"
sync="postaccess" level="mandatory"/>
</transition>
</state>
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<state id="products" category="view">
<onentry>
<dimag:syncdata id="Products" sync="preaccess"
level="optional">
<dimag:query>
for $productListData
in doc("products.xml")/products/product
where $productListData/category =
"${categoryList_selectedltem.category}"
return $productListData
</dimag:query>
</dimag:syncdata>
</onentry>
<transition event="productList_onclick"
target="product" >
<dimag:syncstate
value="${productList_selectedltem}"/>
</transition>
<transition event="backButton_onclick"
target="categories" />
</state>
<state id="product" category="view">
<onentry>
<dimag:syncdata id="Products" sync="preaccess"
level="mandatory">
<dimag:query>
for $productData
in doc("products.xml")products/product
where $productData/id =
"${productList_selectedltem.id}"
return $productData
</dimag:query>
</dimag:syncdata>
</onentry>
<transition event="addButton_onclick"
target="categories">
<dimag:syncdata id="ShoppingCart"
sync=" postaccess" level="optional">
<dimag:query>
update insert
<product>
<id>productList_selectedltem.id </id>
<desc>productList_selectedltem.desc</desc>
<prize>productList_selectedltem.prize</prize>
</product>
into //products
</dimag:query>
</dimag:syncdata>
</transition>
<transition event="backButton_onclick"
target="products" />
</state>
<state id="shopEnding" category="view">
<transition event="goButton_onclick"
target="shopPresentation" />
</state>

</state>

Figure 5: Document defining the state machine in Figure 4.
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<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="categories.css" type="text/css"?>
<dimag:presentation id="categories">
<dimag:title>Online Shop</dimag:title>
<dimag:head id="headApp">Category list</dimag:head>
<dimag:list id="categoryList" value="${categoryListData}"/>
<dimag:head id="headApp">Shopping cart:</dimag:head>
<dimag:list id="shoppingCart" value="${shoppingCartData}"/>
<dimag:button id="buyButton">Buy</dimag:button>
</dimag:presentation>

Figure 6: User interface definition for the categories view.

Some elements and attributes of the application workflow description have been added to the
SCXML standard, included in the dimag namespace. This new namespace permits the SCXML
language processor to differentiate the standard SCXML lexical elements from our language ex-
tensions. We have implemented additional modules to process these new elements defined for
the DIMAG framework. The new modules decorate the data structure generated by the SCXML
implementation representing the workflow state machine.

The new < dimag:invokeMethod > element represents the actions associated to the transi-
tions. < dimag:invokeMethod > has an attribute named scope to differentiate between local
and remote invocations. The className attribute is interpreted differently depending on the
value of scope. If the scope is local, className provides the fully-qualified class name (e.g.,
org.dimag.sample.Login), comprising the namespace or package (org.dimag.sample) plus the
name of class (Login). For remote invocations, the relative path is obtained first (org/dimag/),
and then the name of the component that implements the remote call (the sample.dll .NET Com-
pact Framework assembly, or the sample.jar package for Java ME and Android). In both scenarios,
method indicates the method to be called.

For passing arguments and returning values, the framework uses context variables by means
of a Java-like expression language (e.g., the ${login} variable in Figure 5). Variables belong to
the same global scope and are available in all the states of the workflow, in the views of the user
interface, and in the methods invoked with <dimag:invokedMethod>.

The transitions between states are carried out by the cond attribute of the <transition> ele-
ment. The conditions that activate a transition could be a user event (e.g., enterButton_onclick)
or even the result of a method invocation (e.g., in the validateLogin method, the condition is the
result of the method, kept in the ${1ogin0OK} context variable).

5.2.3. DIMAG-UI Language

The declarative definition of a DIMAG application also requires the specification of the user
interface. DIMAG uses a subset of the IDEAL2 language from the MyMobileWeb project [15].
Presentation styles are defined by means of CSS documents, referenced from DIMAG-UI. Figure 6
shows the definition of the Categories view associated to the Categories state in Figures 4 and
5. Note that an additional CSS document provides the presentation style of the user interface
controls. Another important issue is the presence of context variables in the presentations (e.g.,
${categoryListData}).

The context variables are the communication mechanism between the application workflow and
the user interface. In some cases, context variables take their values from the user input in the
application views. In some other situations, they take values from method invocations or data
queries performed during the execution of the applications, as defined in the SCXML workflow
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specification (Figure 5).

5.8. Synchronization Module

The synchronization module defines both data and state synchronization. Data synchronization
provides data consistency between the local database in the mobile client and the relational database
in the server side. State synchronization is used to inform the server about the new state of the
client application. Moreover, this state synchronization allows clients to interchange their context
variables with the server. This information can be used for different useful purposes, such as
statistical reports of the preferred user options.

As mentioned, partially connected architectures are an important concern in mobile environ-
ments. For this purpose, synchronization can be performed when connectivity is available; other-
wise, the level attribute of <syncdata> element comes into play (Figure 7). This attribute can
take two different values: mandatory or optional. The former implies that the synchronization is
compulsory. Therefore, if there is no connectivity, the application will show an error, warning the
user about the need for connection before continuing the application execution. For example, in
the SCXML document in Figure 7, the user login and password are compulsorily sent to the server
in order to authenticate the user.

In case the level attribute has the optional value, the data synchronization task will not be
executed if there is no connectivity. The task will be queued and performed when connectivity is
reestablished. In the Product state in Figure 7, the product selected by the user is optionally sent
to the server when the addButton is clicked. In case there is no connectivity, this information is
stored locally and updated afterwards, when the connection is restored.

<scxml xmins="http://www.w3.0rg/2005/07/scxml"
xmlins:mobapp="http://my.custom-actions.domain/CUSTOM"
version="1.0" initialstate="applicationFlow">

<state id="applicationFlow" initial="login">

<state id="product" category="view">

<transition event="addButton_onclick"

<state id="validateLogin">
<onentry>
<dimag:syncdata id="Users" sync="preaccess"
level="mandatory">
<dimag:query>
for $loginData in doc("users.xml")/users/user
where $loginData/login="${textFieldLogin}" and
$loginData/password="${textFieldPassword}"
return $loginData
</dimag:query>
</dimag:syncdata>
<dimag:invokeMethod scope="server"
className="org.dimag.main.ValidateLogin"
method="validateLogin" result="${loginOk}">
<dimag:argument expression="${loginData}"/>
</dimag:invokeMethod>
</onentry>

</state>

Figure 7: <syncdata> element

target="categories">
<dimag:syncdata id="ShoppingCart"
sync=" postaccess" level="optional">
<dimag:query>
update insert
<product>
<id>productList_selectedltem.id </id>
<desc>productList_selectedltem.desc</desc>
<prize>productList_selectedltem.prize</prize>
</product>
into //products
</dimag:query>
</dimag:syncdata>
</transition>

</state>

</state>

in workflow definition.
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<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE application SYSTEM "application.dtd">
<application xmlns='http://dimag.org/namespace/application'>

<syncpolicy>
<syncdataserver>
<URI>http://156.136.2.19:7777</URI>
</syncdataserver>
</syncpolicy>
<datamodel>
<syncdir path="/dimag/resources/data"/>
<entities>
<entity id="Products" filename="products.data" defaultSync="preaccess"/>
<entity id="Categories" filename="categories.data" defaultSync="both"/>
<entity id="Users" filename="users.data" defaultSync="both"/>
<entity id="ShoppingCart" filename="cart.data" defaultSync="postaccess"/>
</entities>
</datamodel>

</application>

Figure 8: Synchronization elements in DIMAG-Root.

5.8.1. Synchronization Policy in DIMAG-Root

The default synchronization configuration is specified in the DIMAG-Root file (Figure 3), and
specific fine-grained adjustments take place in the workflow definition file. Default synchronization
in DIMAG-Root is specified in the <syncpolicy> and <datamodel> elements (Figure 8). <
syncpolicy> simply indicates the synchronization server name and port; <datamodel> specifies
the directory that contains the data model, and the default synchronization policy for each single
data entity (the defaultSync attribute). This attribute admits four possible values: preaccess,
postaccess, both and disabled. preaccess and postaccess indicate that synchronization takes
place before and after the query, respectively; disabled indicates that data will be updated in the
mobile device only; and both represents preaccess plus postaccess.

5.8.2. Synchronization Policy in the SCXML Document

Figure 7 shows how the <syncdata> element in a SCXML workflow definition document has
three attributes. First, id provides the identifier of the entity which is accessed. Then, sync is the
particularization of the defaultSync attribute explained in 5.3.1 (preaccess, postaccess, both
or disabled). If it was not included in the declaration of the <syncdata> element, the default
value specified in the DIMAG-Root document will be used. The third attribute, level, indicates
whether the synchronization is mandatory or optional.

The data to be synchronized is declaratively specified by means of XQuery expressions, which are
executed upon synchronization. The results of all the queries are stored in the application context
using the return keyword, and they can be later used in the application workflow. An example is
the ValidateLogin state in Figure 5. The result of the query is saved in the ${loginData} context
variable. Afterwards, that variable is the argument of the validateLogin method invocation in
the same state.

The XQuery expressions used in the workflow definition provide a simple and powerful mech-
anism to build declarative applications. They establish a relationship between the application
workflow and the data model defined in DIMAG-Root files. Queries operate against the XML en-
tities defined in the data model, and use context variables to intercommunicate the data layer, the
application workflow, and the user interface. The XQuery features used in the DIMAG framework
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are compatible with the W3C XQuery 1.0 recommendation.

The syntax of state synchronization is simpler than for data synchronization. It is only necessary
to indicate the <syncstate> element and the context variable that the client will send to the
server. For example, Figure 5 shows how simple it is to send the categoryList_selectedItem
variable to the server in the categoryList_onclick transition of the Categories state, using state
synchronization (<dimag:syncstate>).

5.3.83. The Synchronization Process

As mentioned, DIMAG performs client-server file synchronization using the SyncML protocol
and the Funambol open-source synchronization server. A client application interacts mainly with
two entities of the Funambol Client API: the SyncManager and the SyncSource. The SyncManager
is in charge of hiding the complexity of the synchronization process, providing a simple interface
to the client application. It handles communications, including the underlying protocol. The
SyncSource represents the collection of items stored in the local repository. It represents both the
client items to be sent to the server, and those obtained from the server. The client interacts with
SyncSource, while the SyncManager performs the transparent synchronization.

Figure 9 shows a sequence diagram of the synchronization flow, where the entities that par-
ticipate in the synchronization process have the following meaning. ClientApplication repre-
sents any program using the Funambol SyncML API (the client mobile application in DIMAG). A
SyncManager represents the SyncML API synchronization engine, and SyncSource corresponds to
the interface of the data source. SyncListener provides a mechanism to monitor the synchroniza-
tion process and SyncServer symbolizes the SyncML server.

As shown in Figure 9, the synchronization process is made up of an initialization, the synchro-
nization performed when data is modified, and the end of the synchronization session. The client
application starts the synchronization process providing a SyncSource to be synchronized (source).
Then, the SyncManager takes control of the synchronization process. Whenever an element in the
SynSource is modified, either by the client or the server, the data is transparently synchronized. A
further description of the synchronization process is described in [28].

6. Implementation

The dynamic generation and deployment of DIMAG applications consist of two phases: program
analysis and code generation.

6.1. Program Analysis

The DIMAG-Root, DIMAG-UI+CSS and SCXML documents describing a DIMAG application
are analyzed before generating the target code. For user interface and workflow documents, an
Abstract Syntax Tree (AST) structure is built to guide the code generation phase.

A DIMAG application is commonly defined with multiple views comprising the application
presentation layer. Therefore, the analysis of the DIMAG-UI documents creates an independent
AST for each DIMAG-UI document. Afterwards, each AST is decorated with the style information
provided by the corresponding CSS documents.

We have used the Apache Commons SCXML implementation to process the workflow docu-
ments. We have enhanced that tool with specific modules that process the extensions we added
to the language. These modules are executed when a dimag element is processed by the tool,
building the corresponding AST in one step. A single AST is generated for the whole application
workflow [33].
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Figure 9: Synchronization flow in Funambol.

6.2. Code Generation

Once the AST has been created in the program analysis phase, DIMAG uses the class diagram
shown in Figure 10 to generate application code for a specific platform. The classes involved in the
code generation process are divided into four modules:

— codegenerator: This module writes the target code for a specific DIMAG application. In
Figure 10, only the CodeGenerator class is shown, but this class is the root of another
hierarchy shown in Figure 11. It holds the path where code is generated, a buffer for temporal
storage of the class being generated, and a write method to generate the target code.

— synchronizer: This module performs the state synchronization with the server, as described
in Section 5.3.3. Using SyncML, it synchronizes the data when there are changes in the
dataset at the server or client side, considering the synchronization policies described in the
application specification. If there is no connectivity, the mobile client displays a warning
message and waits for the server acknowledgment to advance. This module is added to the
generated application.
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Figure 10: Classes used to dynamically generate DIMAG applications.

— remotemethodinvoker: This is the module devoted to perform local and remote method
invocations. For remote invocations, the current implementation uses SOAP Web Services
provided by the RemoveMethodInvoker class. In contrast, LocalMethodInvoker allows calling
local methods implemented for a particular target platform. This module is added to the
generated application.

— visitors: A module that includes different instances of the Visitor design pattern [34] to
traverse the different ASTs representing a DIMAG application, calling to the code generator.
The DefaultVisitor class guides the process of code generation, invoking the rest of the mod-
ules using reflection. The VisitorCGUI class generates user interface code and VisitorCGFG
the application workflow; VisitorSG decorates the user interface AST with CSS annotations;
and VisitorLG connects the application workflow with the application views, telling the in-
terface elements what to do when an event is triggered. This module, together with the
codegenerator, converts the ASTs into executable code.
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Figure 11 details the internal structure of the codegenerator module. It has been designed
following a component-oriented approach, so that the programmer can dynamically add new code
generation modules, without restarting the framework [35]. Those new modules would provide code
generation for software platforms that were not supported yet, following the Parallel Hierarchies
design pattern described in [36].

FlowCodeGenerator
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Figure 11: Class hierarchy of the codegenerator module.

When a mobile Web browser requests an application and the device is identified, the required
classes for generating the application for that particular platform are dynamically loaded. The
criterion used to name these classes is very important, because they are dynamically loaded con-
sidering a fixed naming convention. Class names are made up of the target platform name (e.g.,
BlackBerry or Android) plus the application element to be generated (e.g., AppUI or AppFlow)
—see Figure 11. This naming convention is used to follow the Convention over Configuration (CoC)
principle [37], facilitating the dynamic extension of the framework, and reducing the number of
configuration files [37].

The current version of DIMAG generates code for Android, the .NET Compact Framework,
and the MIDP Java mobile platform using Oracle’s LWUIT for the user interface. LWUIT has
been created to reduce user interface fragmentation in Java ME; the same Ul can be defined for
CLDC/MIDP and for CDC/PBP/PP. DIMAG genecrates (C# and Java) source code that is later
compiled to obtain the binary application. It is worth noting that code generation has to consider
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not only the different user interfaces but also the syntactic and semantic differences among the
target languages (e.g., the life cycle of a Midlet is quite different to that of a .NET application).

7. Related Work

7.1. Cross-Platform Mobile Development Tools

Many existing commercial cross-platform mobile development tools (XMTs) have appeared on
the market over the last years. They commonly follow different approaches to facilitate application
definition and code generation for a specific set of mobile target platforms. Focusing on the devel-
opment tools for building native applications, the following paragraphs provide a brief description
of the most popular XMTs [38].

Xamarin [39] provides two ports of the Microsoft’s .NET Common Language Runtime (CLR)
to Android and i0S, and an Integrated Development Environment (IDE) named Xamarin Studio.
Xamarin provides imperative application creation for Android and iOS in C#. In order to create a
multi-device application, a project needs to be started for each different platform (Android, iOS and,
directly, on Windows Phone), with the possibility of sharing source code among projects. The C#
classes required to program an application vary depending on the target platform. Therefore, the
Write Once, Run Anywhere principle is not fully followed, although Xamarin’s technology provides
a single programming language to develop applications for three mobile platforms. Reusing code
among platforms is managed by the developer in a manual way.

The Corona SDK [40] is a software tool that allows application definition in the imperative
Lua programming language. Corona generates code for iOS and Android (and two other platforms
which are actually specific Android-based eBook device families: Kindle and Nook).

Appcelerator Titanium [41] is an IDE that allows the generation of applications for Android
and iOS. Recently, it has started providing support for generation of mobile Web applications.
Application definition is carried out programmatically, in JavaScript.

Unity [42] is a visual IDE mainly focused on the creation of multi-platform video-games. It
supports i0OS and Android, in the mobile domain, but also for other desktop and video-game console
platforms. Additionally, it provides the definition of generic applications using C#, JavaScript or
Boo.

Finally, PhoneGap [43] permits single application definition by means of HTML, CSS and
JavaScript. It executes the application by interpreting the definition files in a Web view em-
bedded in a native application. Therefore, application view (UI content and styling) is defined in
a declarative way, by means of HTML and CSS. On contrast, application model and controller are
imperatively defined in JavaScript.

7.2. Existing uses of SCXML

Considering the relevance of the SCXML language in the definition of the DIMAG framework,
we have analyzed how other works have effectively used this language to define application workflow.
SCXML is the proposed language for Controller Document in W3C’s Multimodal Architecture and
Interfaces [44]. This recommendation is the technological basis for software products facilitating
multimodal interaction between information services and users, such as Convergys Media Exchange
with HomeZone [45] and Intelligent Voice Portal [46]. SCXML is used in the W3C Multimodal
Architecture as the application’s interaction manager. Related to voice-based applications, W3C is
using SCXML as the language to handle dialog management in the next version of VoiceXML [47]
(version 3.0).
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Apache Commons SCXML [7], the language processor used in the DIMAG framework, is also
used by other Apache projects, such as Reusable Dialog Components and Apache Shale. Outside the
Apache community, the Software Demo [48] platform for online live testing of software uses SCXML
to manage software/hardware infrastructure for managing resources, such as virtual machines,
storage devices and virtual desktop components.

MyMobileWeb [16] is an open source, standards-based software framework that simplifies the
rapid development of mobile Web applications and portals. MyMobileWeb uses SCXML to specify
the control of mobile application flow generated by this framework.

8. Conclusions

Computer standards entail an important tool to develop new software products that integrate
multiple existing technologies. DIMAG faces the complex problem of device fragmentation, propos-
ing a framework to declaratively build connected mobile applications. We have divided this prob-
lem into simpler subproblems, and studied the suitability of existing standards to solve them. In
DIMAG, applications are defined with three different specifications: workflow definition, user inter-
face, and application information. Different standard languages have been chosen to define these
modules. Mainly, IDEAL2 is used to define the user interface and SCXML to specify the appli-
cation workflows. XQuery has been the selected language to declaratively specify the data to be
synchronized between the server and the client. Software standards have also been used to imple-
ment DIMAG: W3C DDR Simple API for device identification, SyncML for data synchronization,
and JSR 154, SOAP 1.1 and WS-I Basic Profile for client server communications.

The DIMAG framework shows the feasibility of creating a platform to open new opportunities
in the research and development of connected mobile applications, based on the Write Once, Run
Anywhere approach. It is meant to give support to many of the issues related to mobile application
generation, considering the specifics of target mobile devices, the dynamic generation of applications,
and the client upgrade when a new version of the application is released.

Future work will refine the different modules that make up the framework. The code generation
process of mobile clients will be augmented, considering new specific controls of mobile devices.
We will also take into account other additional factors regarding user interface adaptation, such as
screen size and color depth. Integration with the context is another issue of interest for the authors
of the DIMAG framework. Future versions of the platform will support transitions between states
caused by events raised by the proximity of a wireless network, specific cells in a cellular network,
or Bluetooth devices. Finally, after the involvement of the authors in the W3C MBUI working
group, another future improvement of DIMAG is the alignment of user interface definition with the
recommendations released by the W3C.
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