
Learning	memory	management	with	C-Sim:		
A	C-based	visual	tool	

Baltasar	García	Perez-Schofielda,	Matías	García	Riveraa,	Francisco	Ortinb,	María	J.	Ladoa	
	

aHigher	School	of	Computer	Science	Engineering,	University	of	Vigo,	Campus	As	Lagoas,	Ourense,	Spain	
	

bUniversity	of	Oviedo,	Computer	Science	Department,	c/Calvo	Sotelo	s/n,	33007,	Oviedo,	Spain

	
	
	
	
	
Notice:	This	is	the	authors’	version	of	a	work	accepted	for	publication	in	Computer	
Applications	in	Engineering	Education.	Please,	cite	this	document	as:	
	
	
Baltasar	G.	Perez-Schofield,	Matias	Garcia	Rivera,	Francisco	Ortin,	Maria	J.	Lado.	Learning	
memory	management	with	C-Sim:	A	C-based	visual	tool.	Computer	Applications	in	
Engineering	Education,	volume	27,	issue	5,	pp.	1217-1235,	September	2019,	doi:	
10.1002/cae.22147.	
	
	
	
	
	
	

For Peer Review

1

Learning Memory Management with C-
Sim: A C-Based Visual Tool

Abstract. Nowadays, Computer Science (CS) students must cope with continuous challenges related to

programming skill acquisition. In some occasions, they have to deal with the internals of memory

management (pointers, pointer arithmetic and heap management) facing a vision of programming from

the low abstraction level offered by C. Even using C++ and references, not all scenarios where objects

or collections of objects need to be managed can be covered. Based on the difficulties identified when

dealing with such low-level abstractions, the C-Sim application, aimed at learning these concepts in an

easy way, has been developed. To support the tool, the C programming language was selected. It

allows to show concepts, remaining as close as possible both to the hardware and the operating system.

To validate C-Sim, pre- and post-tests were filled in by a group of 60 first-year CS students, who

employed the tool to learn about memory management. Grades of students using C-Sim were also

obtained and compared to those that did not use the tool the former academic year. As main outcomes,

82.26% of students indicated that they had improved programming and memory management

knowledge, and 83.64% pointed out that the use of this type of tools improves the understanding and

quality of the practice lessons. Furthermore, marks of students have significantly increased. Finally, C-

Sim was designed from the ground up as a learning aid, and can be useful for lecturers, who can

complement their lessons using interactive demonstrations. Students can also employ it to experiment

and learn autonomously.

Keywords: Education, Memory Management, Systems Programming, Visual Tool, C Programming
Language.

Page 1 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

2

1 Introduction
According to the Computer Science (CS) Curricula 2013 (CS2013), fundamental skills and knowledge

that all computer engineering graduates must possess must be insistently sought and carefully identified

[1]. The learning of CS includes several topics in Programming Languages.

Great efforts about learning programming are continuously being made to teach students from

primary school [2,3,4] to University students [5,6,7]. In this education level, introductory CS courses

are aimed at developing programming skills. As an example, the University of Oxford (UK) includes in

the Bachelor and Master Programs in CS the learning of Functional and Imperative Programming (first

year), and Concurrent Programming (second year) [8]. The Carnegie Mellon University (USA)

recommends students with no programming experience the course Fundamentals of Programming at

the beginning of their studies [9]. The Programming Methodology course is proposed as a first step in

learning about CS in the University of Standford (USA) [10]. The University of Toronto (Canada)

offers in the first year the course Introduction to Computer Programming [11], similar to the University

of Swinburne (Australia), which includes the course Introduction to Programming [12]. In the École

Polytechnique Fédérale de Lausanne (Switzerland), students must pass in the preparatory year the

subjects of Introduction to Programming and Practice of Object-Oriented Programming [13]. The

curriculum of the CS Degree of the University of Vigo (Spain) also includes different programming

subjects in the first and second year [14]. This degree is conducted in the Escuela Superior de

Ingeniería Informática, where a traditional approach (imperative-first, students firstly learn procedural

programming) is taken, contrasting with the objects-first one, followed by also many other faculties.

In a first programming subject (Programming I), students learn basic programming by means of

the C++ [15] programming language. In fact, they are taught C [16], and some selected concepts from

C++, such as references. In a second subject (Programming II), students learn object-oriented

programming through Java [17]. Time is a limiting factor to teach low-level mechanisms related to

memory storage and operating system in the first Programming courses [18]. These concepts are taught

in the Computers Architecture I subject, during the second semester.

To learn memory management, students must face a vision of programming from the low

abstraction level offered by C. Even using C++ and references, lecturers find it impossible to cover all

scenarios where objects or collections need to be managed. The concept of pointer and other topics

Page 2 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

3

related to memory management must be taught. Students have to learn about memory addresses, stack

vs. heap, word size, among other important concepts [19].

When learning memory management, and in accordance with other published works [20], several

complex concepts have been detected: a) memory as a one dimension array; b) codification of types,

with their different sizes and how the word size of the machine affects that codification; c) the concept

of pointer being just an integer (representing a memory address), and a type (the type of the pointer,

which denotes the number of bytes occupied by the value); and d) memory access from the address

stored in a pointer, sometimes involving the & and * operators, together with pointer arithmetic

(specially for running over arrays).

Several applications, all including Graphical User Interface (GUI), aimed at helping students to

acquire memory management skills and deal with pointers can be found in the literature. Table 1 shows

the main characteristics and limitations of these tools. Their most meaningful trait is the set of views of

the program being executed they offer, being these source memory representation, variable relationship

diagrams, etc. The column “Integration” shows whether these views are used as a whole instead of

separate tools. The column “Program animation” shows whether all these views are updated with each

executed instruction or not.

The main contribution of this work is to present C-Sim, a visual programming tool devoted to

learn memory management concepts, and focussed on visual representation on memory storage of

variables, and the relationships set from their addresses (i.e., pointers), and allows students to interact

with memory in a controlled sandbox. In contrast to a common debugger, students do not need to have

previous knowledge about the specifics of memory management, or the effects of pointer arithmetic;

results for each instruction are reported in all views; and finally errors occur without being catastrophic.

Therefore, users can safely simulate the consequences of using pointers, or the * and & operators,

learning the relations set among variables through live diagrams. Moreover, our students can also

interact with a given program running it step by step, observing the effects of each instruction. They

can also use our tool to change any values of variables (specially including pointers). Thus, C-Sim

opens a wide spectrum of educational possibilities. With this tool, we are not pretending to present a

tool to learn C, but to have a support to deal with memory management concepts, while deepening in C

concepts.

Page 3 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

4

It must also be remarked that C-Sim can be a very useful tool to explain concepts such as

physical distribution of data structures in the computer’s physical memory, this being necessary for

later learning of string management, dealing both with dangling and wild pointers, learning of copy

constructor and assigning operator, passing by value and reference parameters, working with insecure

code and vulnerabilities, such as buffer overflows/underflows, or detecting the adequate moment to

free memory in different applications.

The rest of the paper is organized as follows: Section 2 explains the fundamental aspects about

the software tool, including main features, requirements, implementation and use. Section 3 presents

the methodology employed to validate the application. Section 4 shows the results obtained, as well as

the corresponding discussion. Finally, conclusions are presented in Section 5.

2 Software Description

2.1 Main Features

C-Sim is a C-based visual application designed for learning memory management. The main goal is to

provide students with an easy tool to enable them a better understanding of memory assignment to

variables and arrays, and specially how pointers hold the memory address of the pointed variables. An

initial version of the tool was first published in 2014, but with very limited functionality [30].

C-Sim has followed an important evolution over the last years, and initial existing limitations

related to lack both of GUI and representation of arrays, were overcome in this new version.

The main features of present C-Sim are:

◦ It creates a dynamic visual scheme of the variables in the program, depicting their locations
in memory and their relationships.

◦ It allows users to create or modify variables through a friendly GUI, which is globally
updated with each interaction.

◦ It presents viewers for existing variables, history and watches. The latter allows to
dynamically follow the variations in value for a given variable.

◦ It offers immediately updated views, to show them as a quick answer to users’ instructions.
◦ It includes pointers and references management, as well as memory states.
◦ It allows both to execute each instruction separately and the whole program.

2.2 Hardware and Software Requirements

In this Section, main hardware and software requirements are presented.

Page 4 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

5

Basic hardware requirements to run C-Sim are the following:
◦ Arm Cortex A53, Intel Pentium SU4100, or AMD E350 processors.

◦ 1GB of RAM.

◦ 1MB of free space on the hard disk.

On the other hand, software requirements are:

◦ GNU Linux Distributions, 32 and 64 bits. It has been executed showing complete
functionality both in Arch Linux and Ubuntu Linux.

◦ Windows, 32 and 64 bits. Total functionality has been tested in Windows 10.
◦ Mac OS, 32 and 64 bits.
◦ Mono software platform [31]. While Windows executes this tool without the need of any

other dependency, in Linux and Mac the Mono implementation of the .NET framework is

needed.

2.3 Implementation

The architecture employed to develop C-Sim is shown in Figure 1. Main parts are described below.

2.3.1. Machine

Class central to the design, being the most important properties the word size and the endianness

(explained in Section 2.4, Session 2). These two characteristics of the machine make it mandatory to

create new objects when changed: ByteConverter, TypeSystem, MemoryManager, SymbolTable,

and the SnapshotManager (in order to manage the different states of the machine for each instruction).

2.3.2. StdLib object

Standard library, which contains all the functions in the system. It can be maintained for all executions.

For each instruction, a new Parser and Lexer (for the instruction’s lexical and syntactical analysis), as

well as an ExecutionStack must be created too, when the instruction is valid. In that case, the parser

generates a list of opcodes to execute, and after their completion, all the affected variables are updated

in memory. While executing, when an opcode results in an error, all pending opcodes are dismissed

and the error is reported to the user. This means that, although it seems to be an interpreter, this tool

actually behaves as an integrated compiler and a virtual machine.

2.3.3. Opcodes

Understood by the virtual machine, and shown in Figure 2, apart from SubOpcode, MulOpcode,

DivOpcode and ModOpcode, which are hidden in order to save space. The former are the ones

Page 5 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

6

providing functionality for mathematical operations, as in expressions such as “3 * 4” or “2 + (4 * 5)”.

Some of them are:

• CreateOpcode: supports the creation for all types of variables. It is the one used in an

instruction like “int x;” meaning that a variable x of type int is going to be created.

• AssignOpcode: used in instructions such as “x = 5;”, in which the value of the variable x is

changed to the rvalue (right value, represented by the RValue class, shown in Figure 3), at the

right of the assignment operator (hence its name). Indeed rvalues (Figure 3) can be literal values

(i.e., “42” or “5.0”), variable identifiers (i.e., “y” or “x”), the value of a variable, or even a type

(the TypeType class). The later values allow to include types in expressions, as in “sizeof(int)”,

avoiding the need of a special implementation.

• AddressOfOpcode is the opcode for the ‘&’ operator, used in expressions like “&x”, in which

the memory address of x is taken, presumably to be stored in a pointer variable.

• AccessOpcode (opcode for the ‘*’ operator), complementary of the later, and used to access the

memory address stored in a pointer variable, as in “*ptr”. In contrast to the ‘&’ operator, the ‘*’

operator can only operate on pointers again presumably intending to access the value of the

pointed variable.

2.4 Working with C-Sim

The overall visual design of C-Sim is of a REPL (read-eval-loop) tool. Since the C-Sim core is an

interpreter1, it fits that usage very well, immediately updating all views in order to show them to users

as an answer to their instructions. The main layout for the application is shown in Figure 4, in which

the main parts of the window are highlighted in bright red. The user enters C instructions in the console

input entry box, and the immediate result is outputted in the console immediately above it. The diagram

viewer represents the state of memory in the simulated machine, and when the instruction does not

result in an error, it is added to the history viewer, at the right panel. When a new variable is created, it

will be added to the symbol viewer, in a panel at the left.

1 Actually, it is possible to execute C-Sim as a console interpreter (a REL or read-eval-loop), using the --no-gui
parameter. The code shown in this Sections is taken from this view of the tool, while screenshots, diagrams and results
are taken from the GUI view. Moreover, commands starting with a dot (“.”), are only available in the console
interpreter, since they are not needed in the GUI environment (the “>” prompt should not be entered, either).

Page 6 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

7

The central viewer can change its representation through the appropriate tab selection. The

default tab shows a diagram for all variables in the machine, while the other one shows a grid with the

values for each position in memory. Moreover, a click in an entry of the symbol table will lead the user

to the corresponding memory address for that variable in the memory grid. The grid for the whole

memory just shows a continuous representation of the memory in the emulated machine, while the

diagram can also relate pointers and variables.

Users can check the evolution of the values of variables in the watches panel. The history panel

accounts the successful instructions entered. When the user chooses an instruction in the history panel,

C-Sim updates the memory diagram and the memory grid to show the status of the emulated machine,

up to that step. Also, pressing the play button in the toolbar will perform a step by step execution of the

whole program, in which the user can see the results of each instruction for about a second.

To learn memory management employing C-Sim, a workshop consisting of four sessions was

organized. Details are given in the following paragraphs.

Session 1 - Starting with the tool

The main objective of this introductory session is twofold. Firstly, students should be able to

understand the basics of the tool, inviting them to experiment by themselves until they feel comfortable

with the environment. Secondly, the a) and b) difficulties in Section 1 are addressed.

In this session, students are told to start entering specific instructions that will make them feel

comfortable with the system.

> int square_side = 4
> int area = square_side * square_side
16
> printf("%d\n", area)
16
> printf("&square_side: %p, &area: %p\n", &square_side, &area)
&square_side: 0x04, &area: 0x08
> .dump
00 00 00 00 04 00 00 00 10 00 00 00 00 00 00 00

C-Sim works primarily by using the console input (Figure 4). Just after the user enters a C

instruction, the tool builds a diagram with the resulting memory scheme. Also, the memory grid (a raw

view of memory), will be updated, giving the opportunity to analyze the consequences at byte level.

They see in the memory grid where variables square_side and area are located, the basic

behavior of the diagram viewer as well, and the utility of the output viewer.

Page 7 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

8

For each instruction, the tool presents an answer in the form: <vble_id> (<vble_type>

[<vble_address>]) = <vble_value>. A variable definition always returns the created variable, while a

function call will return a value (which is assigned to a temporary variable in the form of _aux__x).

Specifically, printf() always returns the number of characters printed. Note that in the following code

examples the auxiliary variables may be omitted.

The tool also provides a watches functionality, and a tree diagram in which all variables created

in the machine are listed. For example, when clicking on variable ‘area’ on the tree diagram, the

memory grid opens as shown in Figure 5. As we found out before, variable square_side sits on position

4 with a value of 4, while area sits on position 8, storing a value of 162.

Next step is to transform the calculation of the area into a function call, specifically a call to

pow(a, b), which returns a to the power of b. In this way, students are introduced to the set of available

functions of the standard library.

> square_side = 5
> area = pow(square_side, 2)
> printf(area)
25
> .dump
00 00 00 00 05 00 00 00 19 00 00 00 00 00 00 00

The result (Figure 6), would be perceived as a change in the value of the area variable, from 16

(0x10) to 25 (0x19).

Session 2 - Working with pointers

As the first step when dealing with pointers, we clearly state that a pointer is just a matter of two

concepts: a memory address, and a size (which is given by the type of the pointer). Indeed, the purpose

of the program3 below is to assist lecturing that very nature of pointers. Its result is shown in Figure 7.

> int x = 5
> int * ptr = &x
> printf("x: %d\n&x = %p\nptr: %p\n&ptr = %p", x, &x, ptr)
x: 5
&x = 0x04
ptr: 0x04
> .dump
00 00 00 00 05 00 00 00 04 00 00 00 00 00 00 00

The previous code creates a simple integer variable x with value 5, and a pointer ptr pointing to

it. C-Sim will draw a diagram with a box for x containing a value (5), and another box for ptr in a

2 A similar session can be found in video format here: https://youtu.be/dpKxLcuyUGo
3 A similar session can be found in https://youtu.be/R207-2SRBsA

Page 8 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://youtu.be/dpKxLcuyUGo
https://youtu.be/R207-2SRBsA

For Peer Review

9

lower row containing the memory address for x. As shown in the central panel of Figure 7, an

individual variable (variable x), is represented by a first text line containing the type, the number of

bytes occupied, and the memory address it starts on. Just below, a box containing its value (5) in

decimal or hexadecimal (C-Sim defaults to hexadecimal) is presented, and immediately below the

name of the variable (‘x’).

A similar representation scheme for the pointer variable ptr is also shown in Figure 7. The

interesting part here is that the value of the ptr variable is equal to the start address of the x variable

(0x04), and that the type of the pointer is the same as the type of x (‘int’). That is why C-Sim draws an

arrow between them.

A slighter complex program is given below.

> int a = 5;
> int * ptr1 = &a;
> int **ptr2 = &ptr1;
> printf("a: %d\n&a = %p\nptr1: %p\n&ptr1 = %p\nptr2: %p\n&ptr2 = %p", a, &a,

ptr1, &ptr1, ptr2, &ptr2)
a: 5
&a = 0x04
ptr1: 0x04
&ptr1 = 0x08
ptr2: 0x08
&ptr2 = 0x0c
> .dump
2c 65 fc 0b 05 00 00 00 04 00 00 00 08 00 00 00 ,eü.............

Memory addresses are given by default in ascending order, always considering aligning.

However, depending on given settings (Figure 8), memory can also be randomly assigned. This means

that by default, for a 32 bit machine (a four-byte machine word, the default machine type in C-Sim),

four int variables a, b, c and d, will be given 4, 8, 16, and 32 addresses respectively. For a 16 bit

machine (a two-byte machine word), those same variables will be stored at 2, 4, 6 and 8. However, this

is not the only possibility: while C-Sim defaults to an ordered and aligned memory set to zeroes, it is

possible to change that to a memory model in which random aligned addresses are assigned, and

memory is set with garbage contents. The latter would be the opposite extreme in the range of possible

configurations (alignment can be set in the configuration options, while a blank or a memory with

random contents can be chosen on each reset).

Another issue is the so called endianness. Processors are said to be little endian when follow LSB

(Least Significant Bit) ordering or big endian when follow MSB (Most Significant Bit) ordering for

bytes in the values stored. That is, depending on from which byte they begin to read or write a given

Page 9 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

10

value in memory. A little endian approach would mean in practice to start considering the byte

collection for any value taking the LSB first (as Intel processors do). Thus, for a little endian 32 bit

processor, a value of 5 will be stored as 5, 0, 0, and 0, while a big endian 32 bit processor would store it

as in 0, 0, 0 and 5.

Session 2.1 - Pointer arithmetics

This session addresses the d) difficulty identified in Section 1, accessing memory using pointer

arithmetic, by allowing the user to freely experiment with pointer’s values, and the * and & operators.

It is important to consider what is known as pointer arithmetic and weak typing, in which pointers

take a central role. Pointers are not limited to contain the start address of another variable. They are not

even limited to point to a variable of their own type. Indeed, the technique shown in this exercise

normally consists on pointing to a variable of a given type, with a pointer pertaining to another one.

> int x = 25857
> char *pch = &x + 1
> printf("x = %d\n&x = %p\npch = %p", x, &x, pch)
x = 25857
&x = 0x04
pch = 0x05
> .dump
d8 b6 1c f4 01 65 00 00 05 00 00 00 98 b1 e6 1f Ø¶.ô.e.......±æ.
> printf(*pch)
e
> printf("*pch = '%c'\n", *pch)
*pch = 'e'

The output is shown in Figure 9. The variable x has a value of 25857, coded as 6501 in

hexadecimal (represented with the traditional C prefix “0x”, so 0x6501), and since a little endian, 32

bit machine is used, it is written in memory as bytes 01,65,0,0. The pointer to char pch is assigned &x

+ 1. While in C one would need to convert the pointer from type int to char (as in ((char *) &x) + 1),

in C-Sim this is simplified, and the & operator always results in a type-less and simple byte offset

taken from the base (0) memory address.

The value of pch is 5, since &x results in 4 and then it is incremented in one. Taking into account

that the representation of 25857 is [01,65,0,0] in the default machine, and it starts in address 4, *pch is

dereferenced to 0x65, which is the ASCII value for letter ‘e’. In the output above, the value of pch

(second line) is not shown, as C-Sim tries to display a string (zero-ended sequence of characters) in the

special case of a pointer to char.

Page 10 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

11

Session 2.2 - References

This session addresses the c) and d) difficulties identified in Section 1, accessing memory through

pointers and using the * and & operators, showing how references help to hide that complexities.

Although this is transparent to the user, references in our tool are implemented as simple pointers,

for instance int &ref = a is roughly equivalent to int * ref = &a. In spite of being an implementation

detail, we introduce students to references using the same similarity, remarking the differences: a)

references must be mandatorily initialized in their creation, b) they cannot change the variable they are

pointing to, and c) they do not need to use the pointer syntax, i.e. ‘&’ and ‘*’ operators. Another way to

understand references, maybe simpler, is that they are a mechanism to create another name (an alias)

for an already existing variable. This explains why ptr in the source below points to a, when it is

initially created as a pointer to the address of ref.

> int a = 5
> int &ref = a
> int * ptr = &ref
> printf("a = %d\n&a = %p\nref = %d\n&ref = %p\nptr = %p\n&ptr = %p\n", a, &a,

ref, &ref, ptr, &ptr)
a = 5
&a = 0x04
ref = 5
&ref = 0x04
ptr = 0x04
&ptr = 0x0c
> .dump
00 00 00 00 05 00 00 00 04 00 00 00 04 00 00 00

The output of the previous source code4 is shown below, and also in Figure 10. In practice, using

ref is like using a. However, they are different variables. As we can see in the memory dump above

(and check out in the GUI view), there are actually two variables with the memory address of a (0x04),

at addresses 0x08 (ref) and 0x0c (ptr).

Session 3 - Heap management

This session addresses the d) difficulty identified in Section 1, of accessing memory using pointer

arithmetics, by allowing students to freely experiment with pointers’ values, the * and & operators, and

the values in each array position.

C-Sim implements two ways to deal with the heap (dynamic memory): functions malloc() and

free(), as well as C++ operators new and delete. While free() and delete are interchangeable in C-Sim

4 A similar session can be found here: https://youtu.be/1xcK3Fw73ao

Page 11 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://youtu.be/1xcK3Fw73ao

For Peer Review

12

(this would result in undefined behaviour in C++), there is an important difference between new and

malloc(): the first is typed, and the second is not. This means that new int returns a pointer of type int,

in contrast to malloc(sizeof(int)) which always returns a pointer of type char. The implications are

subtle, but nonetheless important: the pointer with new will store the start memory of an integer

number, while with malloc(), the pointer will hold the start address of an array of type char of length

45. This is exemplified with the code below. An array of char is pointed with pointer ptr2 of type int,

and therefore managed as an int variable, although four positions will still be shown in the diagram

anyway.

> int * ptr1 = new int(5);
> int * ptr2 = malloc(sizeof(int))
> *ptr2 = 5
> printf("*ptr1 = %d\nptr1 = %p\n", *ptr1, ptr1)
*ptr1 = 5
ptr1 = 0x08
> printf("*ptr2 = %d\nptr2 = %p\n", *ptr2, ptr2)
*ptr2 = 5
ptr2 = 0x10
> .dump
dc d0 12 76 08 00 00 00 05 00 00 00 10 00 00 00 ÜÐ.v............
> .dump 16
05 00 00 00 5a 9d 9f fb 98 cf 7c 4d 76 2f ce e9Z..û.Ï|Mv/Îé
> free(ptr1)
> free(ptr2)

The output for those instructions is shown in Figure 11 (the screenshot was taken just before

freeing memory).

Session 4 - Arrays

Similar to session 3, the d) difficulty of Section 1 was addressed.

Heap management and pointers are two concepts intimately linked to arrays in C, due to their

own design. However, as discussed before, there is an important difference between new and malloc():

while the first is typed, the second is not.

Figure 12 shows an interesting example in which an array of pointers to int is created, and then

the two first positions are made to point to integer variables x and y. The input is listed below.

> int x = 55
> int y = 66
> int ** v = new int*[10]
> v[0] = &x
> v[1] = &y
> int ** pv1 = &v[1]

5 Note again that the default 32 bit machine is used (sizeof(int) would return 4).

Page 12 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

13

> printf(**v)
55
> printf(*v[1])
66
> printf(**pv1)
66

This creates the diagram shown in Figure 12.

The example above shows how to use arrays, dynamic memory and pointers with a double level

of dereferencing. Since &v[0] and v is the same thing (as well as v[0] and *v), it is possible to access x

in the following equivalent ways: x, *v[0], **v. The same thing happens with y, which can be accessed

as: y, *v[1], **pv1. This is represented in the code above.

3 Validation Method
In order to evaluate the usefulness of C-Sim as an assistant to learn memory management, two tests

(pre-test and post-test), were designed for appraising the satisfaction of the students using the tool. The

purpose of the pre-test was to appreciate their actual knowledge before the workshop. The post-test had

many questions repeated, aiming at evaluating the increase or decrease of confidence of the student,

while some of them just concern their personal experience using C-Sim. Some other are just slightly

different, so results can be checked out to be coherent or not.

These tests were presented during a workshop (of four sessions), with 60 undergraduate students.

They were all enrolled in the subject Computers Architecture I, of the first year, second semester, at the

CS Degree of the University of Vigo.

Authors selected the topics presented in Table 2 as the central ones for assuring that students

have really achieved a good and deep understanding of memory management. In this way, the pre-test

and post-test were built around them.

The first topic of Table 2 is about evaluating how deep students thought their knowledge about

memory management was and how it evolved. This is a self-evaluation question, aimed at capturing the

subjective improvement in their knowledge, as well as second topic, who indicates whether students

think memory management is useful for learning or not. Third and fourth topics are objective, and

address the issue of assimilation of word size and endianness. The fifth subjective topic deals with

students’ opinion about the benefits of C-Sim as an aid to improve memory management

understanding. The last topic is about students appraisal of how the use of the tool in the workshop has

improved their knowledge about memory management.

Page 13 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

14

In addition to these tests, grades obtained by students when learning memory management

through the use of C-Sim were compared to those got by students (same number, 60 students) that

followed traditional classroom, and did not use the tool, the former academic year. In the case of

participating in the workshops, no extra time on the course was required: the ease of use of C-Sim and

the functionalities provided by the tool allowed students to learn the same concepts (and even more) in

the scheduled time. The use of C-Sim and the workshops were the only differences between both

courses. In this way, evaluation systems, learning methodologies and teaching staff were the same.

Related to the evaluation system, it consisted of two parts: 1) acquisition of theoretical concepts

(2 paper-based exams, 60% of the total mark), and 2) practical skills (2 computer-based tests, 40% of

the total mark). It was just in this last part where skills acquired with C-Sim were evaluated the second

year.

To verify if statistically significant differences existed between grades obtained when using/not

using C-Sim, hypothesis test was applied, after verifying normal distributions for grades in both

academic years.

4 Results and Discussion
In this work, a visual tool to deal with memory management learning has been presented. The tool was

validated with 60 CS Engineering students, enrolled in an undergraduate course of Computers

Architecture. Participants had to fill in two questionnaires, previous to the usage of C-Sim, and a

further one after the learning of memory management with the tool.

Main results are shown in Figure 13 and Table 3, that presents the results obtained in both tests,

as well as the questions asked to students, arranged in a way that the related ones in both tests are

compared together. Some questions were included in both tests, to compare results before and after the

memory management skills acquisition. However, other specific inquiries were only asked either in the

pre- or the post- test. The first column shows the question numbering in the original tests as x/-, -/y or

x/y. Firstly appears the question number in the pre-test (x, provided if it exits), and secondly the

corresponding question in the post-test (y, provided it if exists).

4.1 Analysis

In the pre-test, questions 1 and 2 refer to the level of basic knowledge about memory management.

Only 7.27% recognized to have no knowledge about memory management, while around 80%

Page 14 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

15

considered they had some expertise. Both questions were evaluated together, since they were highly

related; unsurprisingly, results were similar. In the post-test (question 4), students claiming to have

good memory management understanding increased from 9.09% to 16.13%, while the percentage of

students with no memory management knowledge drastically reduced to zero, which is a remarkable

achievement. Question 1 was a complementary question in the post-test, dealing with previous

experience in this matter. A percentage nearly to 59.48% of students thought they were high or medium

experienced, while the remaining (40.32%) were unexperienced. These counter-intuitive numbers are

probably explained by the depth of the sudden knowledge obtained after the workshop, a depth they

simply just did not know about.

The third question in the pre-test (repeated as question 2 in the post-test), is related to the

usefulness of the knowledge of memory management as a good complement in CS education. In the

pre-test, 87.27% of students thought that it was useful, a rather intuitive concept indeed. This

percentage increased up to 91.40% in the post-test, being the rest of answers “no” or “don’t know”.

Though the sheer numbers are very good, it is unfortunate that still a small percentage was not sure, or

even worse, answered “no”. Maybe the explanation is that they are used to high-level programming

languages such as Java, in which only a shallow knowledge of low-level concepts is needed. It should

be remarked that according to the CS curriculum of the University of Vigo, students learn C

programming language in the first semester, in Programming I. In the second semester, students have to

deal with Programming II (taught in Java), and with Computers Architecture I, among other courses.

The previous appreciation is probably related to the results of question 6 in pre-test (12 in post-

test) about the real utility of the matter, i.e., whether memory management is just highly theoretical

(only useful for lecturing), or not (also useful for real use in industry). The percentage of students

considering that it was useful in theory and practice rose from 56.36% in pre-test to 59.68% in post-

test. In addition, only a percentage of 11.29% thought it was just a theoretical asset in the post-test. It

can be inferred by these numbers that an important number of students thought it was generally useful,

but also that it became important for them to have acquired that knowledge.

Question 7 in the pre-test (6 in the post-test) deals with the importance of memory management

for students training. In the pre-test, a percentage of 85.45% thought that it was important, increasing to

90.32% in the post-test, a net improvement of nearly a 5%. This last figure is related to those who were

not able to decide about the usefulness before the workshop; they were reduced by more than a 4% in

Page 15 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

16

the post-test, meaning they realized that it had been productive for them. Overall, the sheer number of

students satisfied with the knowledge acquired in the workshop is very good.

In question 8 (in both tests), in the pre-test, a percentage of 83.64% of students thought that C-

Sim would improve their understanding, while a surprising 10.91% thought that their understanding

would neither improve nor worsen. In the post-test, 87.10% of students thought that this visual tool had

improved their understanding (a slight improvement in reference to the previous results), while a 9.68%

(another slight improvement) thought that their understanding had neither improved nor worsen. Again,

a surprising 3.23% thought that blackboard exercises would be more appropriate.

We can appraise how students, in general, consider it useful for both education and industry, and

how they thought that learning this model was useful for they studies.

There are two questions that are central in these tests, and thus repeated (with slight variations) in

both the pre-test (questions 4 and 5) and the post-tests (questions 5 and 3, respectively). In the first pair

(questions 4/5), the student was asked to determine which concepts are central when transmitting data

from one computer to another, with three possible meaningful answers: endiannes and wordsize,

wordsize, and finally “don’t know”. In the pre-test, a 63.34% indicated the first answer , while the third

option had an important share: 20%. In the post-test, those giving the correct answer rise to 85.48%,

while students who did not know decrease to a mere 6.45%.

The second central question (questions 5/3), more specific, complements the previous one. In the

pre-test, 81.82% of students selected the correct answer, increasing the percentage to 87.10% in the

post-test. Furthermore, none of them answered “none of the above”.

The remaining questions were specific for the post-test, and were related to the perception of the

student about the software itself. In question 9, a percentage of 64.52% of students considered the

software “Simple”, while in question 10, 47.77% liked the language being simple, 9.68% considered

that the best of the tool was memory grid, and 27.42% the way it shows data. In addition, 43.55% liked

it (question 11). These results are very good in general, though the memory grid can be inferred to be

not very popular at all.

Finally, questions 7 and 13 in the post-test asked students about whether this workshop had

modified their conception about the matter. Attending to question 7, 82.26% of students recognized

that the workshop had improved their understanding of memory management. For question 13, a

percentage of 16.13% admitted that their conception had considerably changed. This already gives

Page 16 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

17

considerably merit to C-Sim: more than 82% of students thought they had a better understanding, and

about 84% admitted that the workshop had somehow changed their conception, results which we think

are a complete success for our objectives.

4.2 Evaluation

The most important result is probably the one obtained in the post-test about question 7, designed in

order to know whether students considered that the workshop (and therefore the use of this tool), had

improved their knowledge about memory management. A total 82.26% of them considered that their

knowledge had improved.

Questions 1/4 (knowledge of memory), 3/2 (useful for learning), 4/5 (data transfer), and 5/3 (key

components), were designed to indirectly verify the usefulness of the tool by evaluating students’

comprehension of memory management. The number of students thinking that they had an important

knowledge about memory management (knowledge of memory) rises, as well as students considering it

useful for learning (useful for learning). It is definitely possible to appreciate the improvement in the

number of students selecting the correct answer for data transfer and key components, which in case of

questions 4/5 (data transfer), is certainly impressive.

Questions 10 and 11 in the post-test were designed to remark the strong and weak points of the

software. It is really interesting and encouraging that nearly half of students had found this software

very good by selecting the “I like it all in the software” option.

Regarding solely the software, questions 8/8 (tool for learning) and 9 (knowledge improvement)

are remarked here because they are especially interesting. Question 8 gave students the opportunity to

evaluate the usefulness of C-Sim in contrast to traditional classroom. Finally, question 9 was designed

to evaluate the thoughts of students about the simplicity of C-Sim. Results indicate that the tool was

simple to use and easy to manage for students.

4.3 Evaluation of Students Grades

Related to the programming skills acquisition and students’ appraisal, Table 4 shows the different

marks obtained by students that used/did not use C-Sim to learn memory management in both

academic years considered.

Grades obtained by students improved in a significant way when C-Sim was used to learn

concepts about memory management. In this way, the percentage of students that failed the test was

Page 17 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

18

drastically reduced in 25%. Moreover, the number of students getting marks between C and B+ also

increased from 36.67% to 61.67%, this implying a strong improvement in the learning process. In

addition, results of the hypthesis test yielded statistically significant differences when comparing both

collections of marks (p-value < 0.001). In particular, the average grade for students who used C-Sim

was considerably greater than the one obtained by students that did not try the tool (4.70 vs. 3.56 out of

10). This indicates that C-Sim can be a useful tool for learning memory management, since grades

obtained by students that followed this methodology is better than those obtained by those following

traditional classroom.

5 Conclusions and future work
In this paper, difficulties in learning various memory management concepts are identified. Both a

specific lecturing strategy and its support by our educative tool have been discussed. The goal of C-

Sim is to ease learning memory management, by means of behaving as an interpreter and live debugger

for the C programming language. The C programming language (with a few C++ bits) is used due to its

proximity to the representation level of the machine, without any intermediate layer or virtual machine.

The advantages of using this approach with our own students have been demonstrated with the

use of two tests, in which students show both an improvement in their knowledge about pointers in

particular and memory management in general, and their satisfaction with C-Sim as a support tool for

education. The benefits of C-Sim as an aid to the learning process was also assessed when comparing

grades of students that use/did not use the application, since a significantly greater percentage passed

the exam when memory management was learned through the use of the tool.

Future work will be focused on two fronts: 1) to develop new lecturing strategies supported by

the use of C-Sim, improving this tool with new functionality when needed, and 2) to advance in the

support of more complex programs, involving functions and structs.

References
1. Joint Task Force on Computer Engineering Curricula, ACM, IEEE Computer Society. Computer

Science Curricula Recommendation and Guidelines 2013. ACM New York, NY, USA (2013).

2. Kalelioğlu F. A new way of teaching programming skills to K-12 students: Code. org. Comput

Human Behav,2015;52:200-210.

Page 18 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

19

3. Bers MU, Flannery L, Kazakoff ER, Sullivan A. Computational thinking and tinkering:

Exploration of an early childhood robotics curriculum. Comput Educ,2014;72:145-157.

4. Mayer RE. Teaching and learning computer programming: Multiple research perspectives. New

York: Routledge; 2013.

5. Law KM, Lee VC, Yu YT. Learning motivation in e-learning facilitated computer programming

courses. Comput Educ,2010;55:218-228.

6. Esteves M, Fonseca B, Morgado L, Martins P. Improving teaching and learning of computer

programming through the use of the Second Life virtual world. Brit J Educ Technol,2011;42:624-

637.

7. Cedazo R, Garcia Cena CE, Al‐Hadithi BM. A friendly online C compiler to improve

programming skills based on student self‐assessment. Comput Appl Eng Educ,2015;23:887-896.

8. University of Oxford: CS studies: https://www.ox.ac.uk/admissions/undergraduate/courses-

listing/computer-science?wssl=1#. Accessed December 2018.

9. University of Carnegie Mellon: Bachelors Curriculum in CS:

https://www.csd.cs.cmu.edu/undergraduate/bachelors-curriculum-admitted-2014-2015-2016#CS.

Accessed December 2018.

10. University of Standford: Undergraduate in CS:

https://cs.stanford.edu/degrees/ug/Considering.shtml. Accessed December 2018.

11. University of Toronto: CS:

https://www.teach.cs.toronto.edu//cs_courses/current_course_web_pages.html. Accessed

December 2018.

12. University of Swinburne: https://www.swinburne.edu.au/study/courses/units/Introduction-to-

Programming-COS10009/local. Accessed December 2018.

13. École Polytechnique Fédérale de Lausanne: School of Computer and Comuunication Sciences:

https://ic.epfl.ch/computer-science/study-plan_bachelor₁. Accessed December 2018.

14. University of Vigo: Escuela Superior de Ingeniería Informática: http://esei.uvigo.es. Accessed

December 2018.

15. Stroustrup B. The C++ Programming Language. New York: Addison-Wesley Professional; 2013.

Page 19 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://www.ox.ac.uk/admissions/undergraduate/courses-listing/computer-science?wssl=1
https://www.ox.ac.uk/admissions/undergraduate/courses-listing/computer-science?wssl=1
https://www.csd.cs.cmu.edu/undergraduate/bachelors-curriculum-admitted-2014-2015-2016#CS
https://cs.stanford.edu/degrees/ug/Considering.shtml
https://www.teach.cs.toronto.edu//cs_courses/current_course_web_pages.html
https://www.swinburne.edu.au/study/courses/units/Introduction-to-Programming-COS10009/local
https://www.swinburne.edu.au/study/courses/units/Introduction-to-Programming-COS10009/local
https://ic.epfl.ch/computer-science/study-plan_bachelor_1
http://esei.uvigo.es/

For Peer Review

20

16. Kernighan BW, Ritchie DM. The C Programming Language. New York: Prentice Hall; 1988.

17. Gosling J, Bill J, Steele G, Bracha G, Buckley A. The Java Language Specification. Redwood

City: Addison-Wesley Professional; 2014.

18. Tanenbaum AS, Bos H. Modern Operating Systems. New York: Pearson; 2015.

19. Jones R, Hosking A, Moss E. The garbage collection handbook: the art of automatic memory

management. London: Chapman and Hall/CRC; 2016.

20. Milne I, Rowe G. Difficulties in learning and teaching programming—views of students and

tutors. Educ and Inf Technol 2002;7:55-66.

21. Isoda S, Shimomura T, Ono Y. VIPS: A Visual Debugger. IEEE Software,1987;4:8-19.

22. Laffra C, Malhotra A. HotWire -- A Visual Debugger for C++. In Proc. of the C++

Conference;1994;109-122.

23. Mukherjea S, Stasktot JT. Toward Visual Debugging: Integrating Algorithm Animation

Capabilities within a Source-Level Debugger. ACM Trans Comput Hum Interac,1994;1:215-244.

24. Gries P, Mnih V, Taylor J, Wilson G, Zamparo L. Memview: A Pedagogically-Motivated Visual

Debugger. Procs of 35th ASEE/IEEE FIE Conference,2005.

25. Kölling M, Quig B, Patterson A, Rosenberg J. The BlueJ System and its Pedagogy. Comput Sci

Educ,2003;13:249-268.

26. Fernández A, Millán J. CGRAPHIC: Educational Software for Learning the Foundations of

Programming. Comput Appl Eng Educ,2003;11:167-178.

27. García Perez-Schofield B, Ortín F, García Roselló E, Pérez Cota M. Towards an object-oriented

programming system for education. Comput Appl Eng Educ,2006;14:243-255.

28. Guo PJ. Online python tutor: embeddable web-based program visualization for cs education. Proc

of the 44th ACM technical symposium on Computer science education,2013;579-584.

29. Moreno L, González EJ, Popescu B, Toledo J, Torres J, Gonzalez C. MNEME: A memory

hierarchy simulator for an engineering computer architecture course. Comput Appl Eng

Educ,2011:19:358-364.

Page 20 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

21

30. García Perez-Schofield B; Ortín Soler F. C-Sim, un simulador de manejo de memoria de C/C++.

Proceedings of JENUI,2014.

31. Dumbill E, Bornstein NM. Mono: a developer’s handbook. Boston: O'Reilly Media; 2004.

Page 21 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

22

Tables

Table 1. Summarized comparison among systems.

System Programming
language

Pedagogical
tool

Memory
representation

Program
animation Limitations Integration

VIPS [21] Ada No No No
High abstraction

No explanation about representation
of variables in memory models

No

HotWire [22] C++ Yes No No No explanation about memory
storage of class instances No

LENS [23] C Yes No Yes
Difficult to generate diagrams

No explanation about representation
of variables in memory models

Yes

MemView [24] Java No No No No explanation about representation
of variables in memory models No

BlueJ [25] Java Yes No No Object-oriented
Scarce tools and little refactoring Yes

CGRAPHIC [26] C Yes No No Not focused on memory
representation No

Visual Zero [27] Java Yes No No No explanation about representation
of variables in memory models No

Python tutor [28] Python Yes No Yes
High abstraction

No deepening of pointers of
memory representation

Yes

MNEME [29] Java Swing Yes Yes Yes
Memory address not directly shown
Mainly for eviction algorithms and

allocation page file
No

C-Sim v1.0 [30] C, few bits of
C++ Yes Yes Yes

Underdeveloped GUI
No representation of arrays and

pointers
Yes

Page 22 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

23

Table 2. Topics to be assessed in the workshop of the prototype-based paradigm.

Key Topic

Knowledge of memory management Students’ knowledge of memory management, both before and after the workshop.

Useful for learning Students' opinion about the usefulness of memory management for learning
programming.

Data transfer The importance of word size and endianness for representing data.

Key components The importance of pointers, word size and endianness in memory management.

Tool for learning C-Sim is a valuable tool to learn the basics of memory management.

Knowledge improvement Students’ evaluation about how good C-Sim is.

Page 23 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

24

Table 3. Pre-test and post-test questionnaires.
Question/options Pre-test Post-test # Question/options Post-test

1/4 Do you think you have basic knowledge about memory
management and computer architecture? 8/8

The fact of using a programming system that
exemplifies memory management in the
practice classes...

No 7.27% 01.61% You think that classic blackboard
classes would be better 05.45%

Some 83.64% 82.26%
It will improve the understanding
and the quality of the practice
classes

83.64%

Quite a lot 9.09% 16.13% It won’t improve nor worsen the
understanding or quality 10.91%

2/-
Do you think you have basic knowledge about what
memory management and computer architecture are useful
for?

-/1 You had previous experience or formation

No 05.45% Quite a lot 03.23%
Some 78.18% Some experience 56.45%
Quite a lot 16.36% None 40.32%

3/2 Do you think that memory management and computer
architecture are useful for learning? -/7

Do you think this workshop allowed you to
improve your knowledge about memory
management and computer architecture in
particular, and programming in general?

Yes 87.27% 91.40% Yes 82.26%
No 05.45% 03.23% No 04.84%
I don’t know 07.27% 04.84% I don’t know 12.90%

4/5 In order to send data between computers... -/9 The software tool is:
Word size and endianness 63.34% 85.48% Simple 64.52%
Word size 13.33% 03.23% Not simple nor complex 32.36%
I don’t know 20.00% 06.45% Complex 3.23%
None of the above 03.33% 04.84%

5/3 In memory management and computer architecture, the
concepts involved are... -/10 The best of the software tool is:

Pointers 07.27% 09.68% Simple programming language
Word size 01.82% 00.00% Simple library 06.45%
Endianness 05.45% 03.23% How it shows data 27.42%
All of above 81.82% 87.10% Memory grid 09.68%
None of the above 03.64% 00.00% Nothing worth noting 00.00%

6/12 The usefulness of memory management and computer
architecture is: -/11 The worst of the software tool has been:

Both theoretical and practical 56.36% 59.68% Simple programming language 01.61%
Useful for lecturing 05.45% 25.81% Simple library 06.45%
Theoretical 30.91% 11.29% How it shows data 22.58%
I don’t know 07.27% 03.23% Memory grid 25.81%
None of above 00.00% 00.00% I liked it all 43.55%

7/6
Do you think it is going to be important for your studies to
learn about memory management and computer
architecture?

-/13
You think this workshop has
changed the perception you had
about programming

Yes 85.45% 90.32% Quite a lot 16.13%
No 01.82% 01.61% Partly 67.74%
I don’t know 12.73% 8.06% No 16.13%

Page 24 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

25

Table 4. Percentage of students’ grades obtained when using/ not using C-Sim.

Grades (out of 10) Learning with C-Sim Learning
without C-Sim

F (0.0-4.9) 33.33 58.33
C (5.0-5.4) 23.33 20.00
B- (5.5-5.9) 6.67 3.33
B (6.0-6.9) 25.00 8.33
B+ (7.0-7.9) 6.67 5.00
A- (8.0-8.9) 3.33 3.33
A (9.0-10.0) 1.67 1.67

Page 25 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Figure 1. Lexer, Parser Functions and Opcodes do not vary for any machine model, while the ByteConverter,
the TypeSystem, the ExecutionStack, the SnapshotManager, the MemoryManager and the SymbolTable are

dependent of the word size and machine's endianness.

427x166mm (72 x 72 DPI)

Page 26 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Caption : Figure 2. The main opcodes supported.

363x89mm (72 x 72 DPI)

Page 27 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Caption : Figure 3. A selection of the types supported by any machine (this is a simplification). A few depend
on its word size,14 while others are fixed in size. Types are a kind of RValue, which means that they can be

part of a expression, as in sizeof(int).

629x189mm (72 x 72 DPI)

Page 28 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Figure 4. General layout of C-Sim, showing the four main parts of the interface, from left to right and top
down: symbol viewer, diagram viewer, history viewer and watches manager, view selector, console output

and input, and machine information.

418x273mm (72 x 72 DPI)

Page 29 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Figure 5. An example memory grid, in which two variables, one in position 4 with value 4, and another one
in position 8, with value 16, are shown.

Page 30 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Figure 6. Starting with the tool.

Page 31 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Figure 7. A first exercise showing a simple variable and a pointer pointed to it.

Page 32 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Figure 8. Available settings for the emulated machine.

201x213mm (72 x 72 DPI)

Page 33 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Figure 9. Pointer arithmetic and weak typing.

Page 34 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Figure 10: Using references.

Page 35 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Figure 11: Difference between using new and malloc().

Page 36 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Figure 12: An example involving pointers, dynamic memory and arrays.

Page 37 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Figure 13: Bargraph representing the evolution of results for the main questions.

342x179mm (96 x 96 DPI)

Page 38 of 38

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

